Lda and latent diriclet allocation are the most basic Bayesian models. In this paper, we need to study lda's variational derivation method. It is of great significance.
I. symbol Definition
: The number of topics
? : The number of documents
? : The number of terms in vocabulary
? : Index topic
? : Index document
? : Index word
? : Denote a word
In LDA:
: Model Parameter
? : Model Parameter
?, : Hidden variables.
Graph Model:
Introduce variational parameter:
? : Dirichlet Parameter
? : Multinomial Parameter
We introduce variational distribution, a fully factorized Model
? Note that ,? Is the posterior distribution. We have removed given ??
Ii. Overview
We use variational EM algorithm:
In e step, we use variational approximation to posterior to optimize variational parameters and find the most reliable posterior distribution.
In M step, we promote lower bound with respect to the model parameters.
Specific algorithms:
E-step: for each document, find optimal values of the variational Parameters
? M-step: Maximize the lower bound with respect to the model parameters ?? And?
?
?
?
?
?
LDA: Derivation of variation