Poisson point process and its properties

Source: Internet
Author: User

> Li Chen, Wang Guifa. Poisson point process and its properties [J]. Journal of Xinxiang University, 2012, 29 (6): 483-484. doi:10.3969/j.issn.1674-3326.2012.06.002.
* * The following article for the rearrangement of citations **## 1. Preliminary Knowledge-# # # 1: Set $ (X,{\re _x}) $ is a measurable space, if $ {d_p} \subset (0,\infty) $ is a maximum number of sets, then the map $ p:{d_p} \to x $ is a point function on $ x $.
If $ P $ is a point function on $ X $, then $ {n_p}\left ({\left ({0,t} \right] \times U} \right) \buildrel \delta \over = \left\{{s|s \in { D_p},p (s) \in U} \right\} $ where $ T \in \left ({0,\infty} \right), U \in {\re _x} $ This defines $ \left ({0,\infty} \right) \tim A count measure on es X $ is $ n_p (DTDX) $.
Make $ {\pi _x} $ represents a collection of $ x $ on all-point functions, denoted by $ \re ({\pi _x}) = \sigma \left ({\left\{} {n_p}\left ({\left} 0,t) \right U } \right): {\pi _x} \to {\mathbb{z}^ +} \cup \left\{\infty \right\}|t \in \left ({0,\infty} \right), U \in {\Re _X}} \ri Ght\}} \right) $.-# # # definition 2: A random variable that takes a value of $ \left ({{_x},\re \left}} \pi)} _x) $ is called a point procedure on X.
Set $ P $ is $ X $ on the dot function, and $ t \geqslant 0 $, make $ {d_{\theta TP}} = \left\{{s|s \in \left ({0,\infty} \right), S + t \in {D_ P}} \right\} $, definition: $ \theta TP (s) = P (t + s) $ for $q TP (s) = P (t +s) $. where $ s \in d_{\theta TP} $. Set $ P $ is $ X $ on the dot process, if for any $ t \geqslant 0 $, $ \theta TP $ with $ p $ with the same distribution, then called $ P $ for smooth.
-# # # # Definition 3: If $ n_p (DTDX) $ is $ \left ({0,\infty} \right) \times X $ on the $ Poisson $ random measure, then the point procedure is $ P $ for $ possion $ for the point procedure.
Obviously, a $ Poisson $ point procedure $ p $ is smooth when and only if its strength $ n_p (DTDX) $ has the following form: $ n_p (DTDX) =DTN (DX) $, here $ N (DX) $ is $ (x,{\re _x}) on the test degree, called the characteristic measure of $ P $.
-# # # 4: Set $ \{y_t\} $ is a real numeric procedure if for any $ n \in N $, $ t_1 < T_2 < \cdots < T_N $, if there is $ y_{t_2}-y_{t_1}, \cdots , y_{t_n}-y_{t_{n-1}} $ is independent of each other, then called $ \{y_t\} $ for an independent incremental process; If for any $ s < T $, the distribution of $ y_t-y_s $ is only related to $ T-S $, then the independent incremental process $ \{y_ T\} $ is smooth. The right continuous smooth independent increment process is known as the $ Levy $ process.
-# # # Definition 5: For $ \{\omega, f\} $ on the function $ T: \omega \to \left[{0, \infty} \right) $ if for each $ t \geqslant 0 $, there are $ \{t \ge Qslant t \} \in f_t $, then called $ T $ for stop.
# # 2. $ possion $ point Process Nature-# # # theorem 1: if $ n (DX) $ is $ (x,{\re _x}) $ on the $ \SIGMA $ finite measure, then there is a smooth Poisson point process on $ X $, making its feature measure to $ n (DX) $. Proof: For the probability space $ (\omega, F, p) $ and the random measure defined on $ (\omega, F, p) $ n_p (DTDX) $ is $ \left ({0, \infty} \right) \times X $ on the $ Poisson $ random measure, and its strength is $ DTN (DX) $. Take a column collection of $ u_n (n=1,2, \cdots) $, making $0 < N (u_n) < \INFTY $, and $ u_n $ is monotonically incrementing, $ \cup _{n-1}^{\infty} u_n=x $. For each $ N $, it is easy to see that the procedure $ x_{t}^{(n)} =n \left ({\left ({0,t} \right] \times U} \right) $ is the right continuous $ Poisson $ process with a parameter of $ n (u_n) $, therefore, event $ {\lambda _n} = \left\{{\omega |\exists t \in \left ({0,\infty} \right) \to x_t^{(N)}-x_{t-}^{(n)} \GEQSL The probability of Ant 2} \right\} $ is 0. Make $ \lambda  =  \cup _n^\infty {\lambda _n} $, then $ P (\LAMBDA) = 0 $, and $ \lambda =\left\ {{\omega |\exists T \in \left ({0,\infty} \right), N\left ({\left\{t \right\} \times X} \right) \ge 2} \right\} $. Take a $ X $ on the dot function $ p_0:d_{p_0} \to X $, Make $ d_{p_0} (\omega) $ as follows: $ {\omega  \notin when $ \omega0}}} (\omega) = \left\{{s|\exists x \in x,n\left ({\left\{{\left ({s,x} \right)} \right\}} \right) > 0} \right\} $; $ d_{p_0}=d_p $ \omega \in \omega $. The form of $ P (\omega) (s) $ is as follows: if $ s \in d_p (\omega) $, $ N ({(S, x)}) > 0 $, $ \omega \notin \omega $, then there is $ p (w) (s) = x \in X $; if $ s \in d_{p_0} $, $ \omega \in \omega $, then there is $ p (w) (s) = P_0 (s) $; Obviously, $ P $ is $ X $ on the dot process, and for any $ T > 0 $, $ U \subset \re_x $, there is $ {n_p}\left ({\left ({0,t} \right) \times U} \right) \buildrel \delta \over = \left\{{s|\left ({s), P (s)} \right) \in \left ({0,t} \right) \times U} \right\} = \left\{{(s,x) | ( s,x) \in \left ({0,t} \right) \times u} \right\} = N\left ({\left ({0,t} \right) \times u} \right) $. Therefore, $ P $ is $ X $ on the smooth $ Poisson $ point process, and it has a characteristic measure of $ n (DX) $.-# # # # theorem 2: Set \{y_t\} is defined in a probability space of $ (\omega,\psi  , p) $ on $ The Levy $ process, $ \sigma_t (T \geqslant 0) $ is $ \omega $ on the shift operator, making $ y_t \circ \sigma_t = y_{t+s} $. Where any $ T $, $ s \geqslant 0 $, then $ \{y_t\} $ is adapted to filter $ \{\psi_t \} $ The strong $ Markov $ process, whereas $ \psi_t = \kappa  \vee \sigma \left ({\left\{{{y_s}|s \ge 0} \right\}} \right) $, $ \kappa = \ {a | \exists b \subset \re, a  \subset B, P (b) = 0\} $, $ t \geqslant 0 $. Proof: by $ Kolmogorov 0-1 $ law, filter $ \{y_t\} The $ \{y_t\} $ procedure is a strong $ Markov $ process that is adapted to the filter $ \{\psi_t\} $, which is right continuous and meets the usual conditions.-# # # # # # theorem 3: For any $ U \in \re_x $, $ {N_p}\lef T ({\left ({0,t} \right] \times U} \right) $ The $ \CDOT $ distribution that follows the parameter for $ t Poisson N (U) $, then $ p $ is $ \mathbb{r} on $ Poisson The $ point procedure whose characteristic measure is $ n (\cdot) $. Prove the process withheld. $ [$ NOTE 1: $ (\mathbb{r},{\re _\mathbb{r}}) on the measure $ n (\cdot) $ is called the $ levy $ procedure for the $ levy $ measure. NOTE 2: Set $ n (DX) $ Yes $ (X, \re_x $ \SIGMA $ limited measure on $ (\omega, \PSI, p) $ is a complete probability space, $ P $ is defined in $ (\omega, \PSI, p) $ on a smooth point $ Poisson $ process, its characteristic measure is $ n (d x) $ $] $.-# # # # Theorem 4: If $ f (\cdot) $ is $ (x $ re_x) $ A non-negative measurable function, $ \int_x {f (x) n (DX)} < \infty   $, then $ {x_t } = \sum\limits_{s \in {d_p},s \leqslant T} {f (P)}  = \int_{\left ({0,t} \right]} {\int_x {f (X) N (DSDX)}}  < \infty $, $ (T \geqslant  0) $ is the $ Levy $ process, and on any $ t \geqslant 0 $ there is $ e\{x_t\} = T \int_x {f (X) n (DX)} $, so $ \kappa = \{a| A \in F, P (a) = 0 \} $, for any $ t \geqslant 0 $, to $ {f_t} = \kappa  \vee \sigma \left ({\left\{{n_p}\left ({\left 0,s} \right] \times U} \right) |s \leqslant t,u \in {\re _x}} \right\}} \right) $, by $ Kolmogorov 0-1 $ law, filter $ \{f_t\} $ right Continuous, satisfies the usual conditions.-# # # # # # # # # # # # # # # # # # 5: $ \CDOT $ ($ \re_x) $ (X $ $) $ \{z_t\}_{t \geqslant 0} $ is suitable for $ \{f_t \} $ for non-negative Material process, there is $$ e\left\{{\sum\limits_{s \in d,s \leqslant T} {{z_s}f\left ({p (s)} \right)}} \right\} = e\left\{{\int_0^t {{Z _s}ds\int_x {f (X) n (DX)}} \right\} $$ proof: because $ x_t = {\sum\limits_{s \in d,s \leqslant T} {f (P)}} $, $ t \geqslant 0 $ is a right continuous independent increment process, and for any $ T > s \geqslant 0 $, due to $ e\left\{{{x_t}-t\int_x {f (X) n (DX) |{ f_s}}} \right\} = e\left\{{x_t}-{x_s}|{ f_s}} \right\}-t\int_x {f (X) n (DX)}  + {x_s} = e\left\{{{x_{t-s}}} \right\}-t\int_x {f (X) n (DX)}  + {x_s} = (T-s) \int_x {f (x) n (DX)}  -t\int_x {f (x) n (DX)}  + X = {x_s}-s\int_x {f (x) n (DX)} $, so, $ \left\{{ {x_t}-t\int_x {f (X) n (DX)}} \right\} $ is the right consecutive $ \{f_t \} $. For arbitrary bounded stops $ S $, $ T $, and $ s < T $, then there are $ e\left\{{{x_t }-t\int_x {f (x) n (DX)}} \right\} = e\left\{{x_s}-s\int_x {f (x) n (DX)}} \right\} $, ie $ e\left\{{\sum\limits_{s \in D,s \leqslant T} {f (P)}} \right\} = e\left\{{{x_t}-{x_s}} \right\} = e\left\{{\int_{\left ({s,t} \right]} {\int_x {f ( x) n (ds)}} \right\} $, which means $ e\left\{{\sum\limits_{s \in d,s \leqslant T} {{z_s}f\left ({p (s)} \right)}} \right\} = E \left\{{\int_0^t {{z_s}ds\int_x {f (X) n (DX)}}} \right\} $, for the material process $ \left\{{{z_t} = {I_{\left ({s,t} \right]}} (t)} \rig Ht\} $ is established, that is, the above formula for any material process is established.
# # Reference:>-[1] Snyder D L. Random point Process [M]. Liang, Deng Yong, translation. Beijing: People's Education Press, 1982:22-36.-[2] LEWIS P A W. Stochastic points Processes:stochast ical analysis, theory and applications[m]. New York:john Wiley & Sons, 1972:68-89.-[3] Deng Yong, Liang. Random point process and its application [M]. Beijing: Science Press, 1992:17-87.-[4] Xia Dongqing, bu ai, Cang Yaorong. Simulation method based on Poisson process Research [J]. Journal of Shaoyang College, 2007,4 (1): 7-8.-[5] sheng, Shi, Pan. Probability theory and mathematical statistics [m]. Beijing: Higher Education Press, 2001:425-431.-[6] Zhang Bo, tensor Shaw. Apply stochastic process [m]. Beijing: Tsinghua University Press, 2004:33-45.-[7] Chung, Wulide, Li Xianping, et. Probability theory: 2 volumes [M]. Beijing: People's education press, 1980:226-256.

From for notes (Wiz)

List of attachments

    Poisson point process and its properties

    Contact Us

    The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

    If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

    A Free Trial That Lets You Build Big!

    Start building with 50+ products and up to 12 months usage for Elastic Compute Service

    • Sales Support

      1 on 1 presale consultation

    • After-Sales Support

      24/7 Technical Support 6 Free Tickets per Quarter Faster Response

    • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.