Exercise:
7. rewrite theorem 1.4.10 to a more general language. The first sentence is: "set $ F $ to the full homomorphic of the group $ g _ {1} $ to $ g _ {2} $, and $ H <G _ {1} $, and remember $ n ={\ RM Ker} f $, then ...... "
Similar to this theorem, we provide the following solutions:
(1) $ HN $ is a Subgroup containing $ N $ in $ g _ {1} $ and
$ HN = f ^ {-1} (f (H) $
That is, $ HN $ is the full original image of $ F (h) $;
(2) $ (H \ cap n) \ LHD h $ and $ {\ RM Ker} f | _ {H} = H \ cap n $;
(3) Consider homomorphic full shot $ f |_{ h}: H \ To F (H) = HN $, which is known according to the basic theorem of homomorphic.
$ HN \ simeq H/(h \ cap n) $
9. The following proposition is incorrect:
Incorrect $ g _ {1}, G _ {2} $, $ N _ {1} \ LHD g _ {1 }, N _ {2} \ LHD g _ {2} $,
$ G _ {1} \ simeq g _ {2}, N _ {1} \ simeq N _ {2} $
$ G _ {1}/N _ {1} \ simeq g _ {2}/N _ {2} $.
For example, $ g _ {1} = g _ {2} = \ mathbb Z :\{\ mathbb Z, ++ \}$, take $ N _ {1} = 2 \ mathbb Z, N _ {2} = 3 \ mathbb Z $, then $ N _ {1} \ simeq N _ {2} $. as a matter of fact, we can see from the homogeneous structure below:
\ Begin {Align *} \ Phi: N _ {1} & \ to N _ {2} \ 2a & \ mapsto 3A \ end {Align *}
However, $ g _ {1}/N _ {1} = \ mathbb Z _ {2 }, g _ {2}/N _ {2} = \ mathbb Z _ {3} $, while
$ | \ Mathbb Z _ {2} | = 2, | \ mathbb Z _ {3} | = 3 $
Obviously, the two are not homogeneous.
Additional questions:
1. proof theorem 1.4.8. The content is as follows:
If $ F $ is the full homomorphic of the group $ g _ {1} $ to $ g _ {2} $, remember $ n ={\ RM Ker} f $, then
(1) $ F $ creates a bishot between a subgroup of $ N $ and a subgroup of $ g _ {2} $ in $ g _ {1} $;
(2) The above ing maps normal subgroups into normal subgroups;
(3) If $ n \ subset H \ LHD g _ {1} $
$ G _ {1}/h \ simeq g _ {2}/F (h). $
Proof (1) make $ \ gamma $ represent the whole of the $ g _ {1} $ Subgroup containing $ N $, $ \ Sigma $ indicates the whole group of $ g _ {2} $.
\ Begin {Align *} \ Phi: \ gamma & \ To \ Sigma \ H & \ mapsto F (h) \ end {Align *}
Because $ F $ is full homomorphic, it is clear that $ \ Phi $ is indeed a ing, and $ \ Phi $ is obviously full. $ \ Phi $ ticket, otherwise $ H _ {1} exists }, H _ {2} \ In \ gamma $ and $ H _ {1} \ neq h _ {2} $ make
$ F (H _ {1}) = f (H _ {2}) $
Therefore, $ B \ In H _ {2} $ and $ B \ notin H _ {1} $ exist, and $ A \ In H _ {1} $ make
$ F (a) = F (B) $
Yi Zhi $ AB ^ {-1} \ In N \ subset H _ {1} $, and thus $ B \ In H _ {1} $. Conflict! This indicates that $ \ Phi $ is indeed single.
$ \ Phi $ indicates dual-shot.
(2) It is obvious that it is full of homomorphic by $ F $.
(3) ing between (2) $ F (h) \ LHD g _ {2} $
\ Begin {Align *} \ varphi: G _ {1}/H & \ To g _ {2}/F (h) \ Ah & \ mapsto F () F (h) \ end {Align *}
First, we will explain that $ \ varphi $ is indeed a ing, set $ Ah = BH $, that is, $ B ^ {-1} A \ in h $, then $ \ left (F (B) \ right) ^ {-1} f (a) \ In F (h) $
\ Begin {Align *} f (a) f (h) & = F (B) f (h) \ rightarrow \ varphi (AH) & = \ varphi (BH) \ end {Align *}
Therefore, $ \ varphi $ is indeed a ing.
Then it is not difficult to verify that $ \ varphi $ is homogeneous, so
$ G _ {1}/h \ simeq g _ {2}/F (h). $
2. Set $ \ Sigma $ to the self-homogeneous structure of the group $ G $.
$ \ Sigma (G) = g \ rightarrow G = e $
Proof:
(1) $ F: G \ To \ sigma (g) G ^ {-1} $ is a single shot;
(2) If $ G $ is a finite group, each element of $ G $ can be written as $ \ sigma (g) G ^ {-1} $;
(3) If $ G $ is a finite group and $ \ Sigma ^ 2 = {\ rm id }_{ g} $, then $ G $ is an odd-order Abel group.
Proof (1) set $ F (G) = f (h) $, then
\ Begin {Align *} \ sigma (g) G ^ {-1} & = \ sigma (h) H ^ {-1 }\\\ rightarrow \ sigma (H ^ {-1} g) & = H ^ {-1} G = e \ end {Align *}
Thus $ G = h $, that is, $ F $ single.
(2) because $ | G | <\ infty $, (1) knows
$ | F (G) | \ geq | G | $
Note $ F (g) \ subset G $ to $ F (G) = G $. in $ F (g) $, any element has the form of $ \ sigma (g) G ^ {-1} $, that is, $ G $ also has this form.
(3) By (2) $ \ forall g \ in G $, with the Form $ \ sigma (a) a ^ {-1} $, thus
\ Begin {Align *} \ sigma (g) & = \ Sigma ^ 2 (a) \ sigma (a ^ {-1}) = \ left (\ sigma () A ^ {-1} \ right) ^ {-1} = G ^ {-1} \ end {Align *}
If $ g \ NEQ e $ is available, then $ \ sigma (G) = G ^ {-1} \ neq g $ is available, therefore, the non-zero element in $ G $ must appear in pairs, so $ | G | $ is an odd number.
In addition, $ \ forall g, h \ in G $ has
$ GH = \ Sigma \ left (GH) ^ {-1} \ right) = \ sigma (H ^ {-1 }) \ sigma (G ^ {-1}) = Hg $
Therefore, $ G $ is an Abel group.
4. Verify that $ \ {\ mathbb Q ^ *, \ cdot \} $ and $ \ {\ mathbb Q, ++ \} $ are not homogeneous.
If the homogeneous $ F: \ mathbb Q ^ * \ To \ mathbb Q $ exists
$ F (-1) ^ 2 = F (1) = 0 $
Therefore, $ F (-1) = 0 $ is in conflict with $ F $!
5. Evaluate the $ \ {\ mathbb C ^ *, \ cdot \} $ sub-group $ N $
$ \ {\ Mathbb C ^ *, \ cdot \}/n \ simeq \ {\ mathbb R ^ +, \ cdot \}. $
Decoding ing \ begin {Align *} \ Phi: \ mathbb C ^ * & \ To \ mathbb R ^ + \ Z & \ mapsto | z | \ end {Align *}
It is not difficult to verify that $ \ Phi $ is a full homomorphic, and
$ {\ RM Ker} \ Phi =\{ e ^ {I \ Theta}:-\ pI <\ Theta \ Leq \ PI \}$ according to the basic theorem of homomorphic Recognition
$ \ Mathbb C ^ */{\ RM Ker} \ Phi \ simeq \ mathbb R ^ + $
Therefore, use $ n ={\ RM Ker} \ Phi $.
6. set $ H \ lhd g $ and $ | H | = n $, $ | g/h | = M $, and $ (m, n) = 1 $. proof: $ h $ is the only $ N $ subgroup of $ G $.
It is proved that if another $ N $ sub-group $ H _ {1} <G $ of $ G $ exists, it can be seen from theorem 1.4.10.
$ H _ {1}/(H _ {1} \ cap h) \ simeq (H _ {1} h)/h $
If $ | H _ {1} \ cap H | = L $ is set, it is clear that $ L \ mid N $. and $ (H _ {1} h)/H <g/h $, according to the Laplace Theorem
$ \ Vert H _ {1}/(H _ {1} \ cap h) \ vert \ big | \ vert g/h \ vert $
Thus \ begin {Align *} \ frac {n} {L} \ mid m \ rightarrow N & \ mid mL \ rightarrow n \ mid L \ end {Align *}
So $ n = L $, while $ H _ {1} \ cap H \ subset h $ and $ H _ {1} \ cap H \ subset H _ {1} $, yi Zhi
$ H = H _ {1} $
Therefore, $ h $ is the unique $ N $ subgroup.