[Journal of mathematics, jiali] 313rd-Question of 2014 advanced algebra postgraduate exams of South China University of Technology

Source: Internet
Author: User

 

 

1. ($ 15' $) set $ \ BBP $ to a number field, $ f (x), g (x) \ In \ BBP [x] $. proof: $ \ BEX (f (x), g (x) = 1 \ LRA (f (x ^ N), g (x ^ n) = 1, \ EEx $ here, $ N $ is a given natural number.

Proof: $ \ rA $: by $ (f (x), g (x) = 1 $ Zhi $ \ Bex \ exists \ U (x ), V (x), \ st u (x) f (x) + V (x) g (x) = 1. \ EEx $ then $ \ Bex u (x ^ N) f (x ^ n) + V (x ^ N) g (x ^ n) = 1. \ EEx $ and any polynomial except $ f (x ^ N) $, $ g (x ^ N) $ is all except $1 $. therefore, $ (f (x ^ N), g (x ^ n) = 1 $. $ \ la $: Set $ h (x) $ to $ f (x), g (x) $ as the first public factor, then $ h (x ^ N) $ is the formula of $ f (x ^ N) $, $ g (x ^ N) $. (f (x ^ N), g (x ^ n) = 1 $, we have $ h (x ^ N) \ mid 1 $, $ h (x ^ n) = 1 $, $ h (x) = 1 $. this indicates $ (f (x), g (x) = 1 $.

 

2. ($ 20' $) Calculate the determinant: $ \ Bex D_n =\sev {\ BA {cccccc} x_1y_1 & x_1y_2 & x_1y_3 & \ cdots & x_1y _ {n-1} & {\ x_1y_2 & x_2y_2 & x_2y_3 & \ cdots & x_2y _ {n-1} & x_2y_n \ x_1y_3 & x_2y_3 & x_3y_3 & \ cdots & x_3y _ {n-1} & \\\ vdots & \ ddots & \ vdots & \ vdots \ x_1y _ {n-1} & x_2y _ {n-1} & x_3y _ {n-1} & \ cdots & X _ {n-1} y _ {n-1} & X _ {n-1} Y_n \ x_1y_n & x_2y_n & x_3y_n & \ cdots & X _ {n-1} Y_n & x_ny_n \ EA }. \ EEx $

Answer: The level of $ N $ is determined by $ D_n $, then $ \ beex \ Bea D_n & = Y_n \ sev {\ BA {cccccc} x_1y_1 & x_1y_2 & x_1y_3 & \ cdots & x_1y _ {n-1} & X_1 \ x_1y_2 & x_2y_2 & x_2y_3 & \ cdots & x_2y _ {n-1} & X_2 \ x_1y_3 & x_2y_3 & x_3y_3 & \ cdots & x_3y _ {n-1} & X_3 \ vdots &\ vdots & \ ddots & \ vdots \ x_1y _ {n-1} & x_2y _ {n-1} & x_3y _ {n-1} & \ cdots & X _ {n-1} y _ {n-1} & X _ {n-1} \ x_1y_n & x_2y_n & x_3y_n & \ cdots & X _ {n-1} Y_n & x_n \ EA }, \ y _ {n-1} D_n & = Y_n \ sev {\ BA {cccccc} x_1y_1 & x_1y_2 & x_1y_3 & \ cdots & x_1y _ {n-1} & x_1y _ {n-1 }\ \ x_1y_2 & x_2y_2 & x_2y_3 & \ cdots & x_2y _ {n-1} & x_2y _ {n-1} \ x_1y_3 & x_2y_3 & x_3y_3 & \ cdots & x_3y _ {n-1} & x_3y _ {n-1 }\\\ vdots & \ ddots & \ vdots \ x_1y _ {n-1} & x_2y _ {n-1} & x_3y _ {n-1} & \ cdots & X _ {n-1} y _ {n-1} & X _ {n-1} y _ {n-1} \ x_1y_n & x_2y_n & x_3y_n & \ cdots & X _{ n-1} Y_n & x_ny _ {n-1} \ EA }\\& = Y_n \ sev {\ BA {cccccc} x_1y_1 & x_1y_2 & x_1y_3 & \ cdots & x_1y _ {n-1 }& 0 \ x_1y_2 & x_2y_2 & x_2y_3 & \ cdots & x_2y _ {n-1} & 0 \ x_1y_3 & x_2y_3 & x_3y_3 & \ cdots & x_3y _ {n-1} & 0 \\\ vdots & \ ddots & \ vdots \ x_1y _ {n-1} & x_2y _ {n-1} & x_3y _ {n-1} & \ cdots & X _ {n-1} y _ {n-1} & 0 \ x_1y_n & x_2y_n & x_3y_n & \ cdots & X _ {n-1} Y_n & x_ny _ {n-1}-X _ {n-1} -Y_n \ EA }\\\& \ quad \ sex {\ mbox {Column n''-column n-1 ''}}\\& = Y_n (x_ny _ {n-1}-x _ {n-1} Y_n) D _ {n-1 }. \ EEA \ eeex $ with a recursive formula, evaluate $ D_n $: $ \ beex \ Bea Y _ {N-2} y _ {n-1} D_n & = Y_n (x_ny _ {n-1}-X _ {n-1} Y_n) \ cdot Y _ {N-2} D _ {n-1} \ & = Y_n (x_ny _ {n-1}-X _ {n-1} Y_n) \ cdot Y _ {n-1} (X _ {n-1} y _ {N-2}-X _ {N-2} y _ {n-1}) D _ {N-2 }, \\\ cdots <=\ cdots \\\ prod _ {I = 1} ^ {n-1} y_ I \ cdot D_n & =\ prod _ {I = 2} ^ n y_ I (x_iy _ {I-1}-X _ {I-1} y_ I ), \ D_n & = x_1y_n \ prod _ {I = 1} ^ n Y_n \ prod _ {I = 1} ^ N (x_iy _ {I-1}-X _ {I-1} y_ I ). \ EEA \ eeex $ the last step is true for $ Y_1 \ cdots Y _ {n-1} \ NEQ 0 $. However, if some $ y_j = 0 $, we use $ \ ve $ to replace $ y_j $. After applying the above conclusion, we can make $ \ ve \ to 0 $, that is, the final result is also correct.

 

3. ($ 20' $) proof:

(1) If $ \ lm \ NEQ 0 $ is an feature value of matrix $ A $, then $ \ DPS {\ frac {1} {\ lm} | A |}$ is an feature value of $ A ^ * $;

(2) If $ \ Al $ is a feature vector of $ A $, $ \ Al $ is also a feature vector of $ A ^ * $.

Proof:

(1) set $ \ Al \ NEQ 0 $ to the feature vector of $ A $ that belongs to the feature value $ \ lm \ NEQ 0 $, then $ \ Bex a \ Al = \ lm \ Al \ rA | A | \ Al = a ^ * A \ Al = \ lm a ^ * \ Al \ rA a ^ * \ Al = \ frac {1} {\ lm} | A | \ Al. \ EEx $ so $ \ DPS {\ frac {1} {\ lm} | A |}$ is an feature value of $ A ^ * $.

(2) If $ \ rank (A) = N $, then $ \ Al $ corresponds to the feature value $ \ lm \ neq0 $, instead of (1 ), $ \ Al $ is a feature vector of $ A ^ * $ that belongs to the feature value $ \ DPS {\ frac {1 }{\ lm} | A |}$. if $ \ rank (A) = n-1 $, the same as above, only $ \ LM = 0 $ must be considered. $ A \ Al = 0 $, $ \ Al $ is a basic solution of $ A $. by $ AA ^ * = 0 $ Zhi $ \ Bex a ^ * = (k_1 \ Al, \ cdots, K_n \ Al) = \ Al (k_1, \ cdots, k_n), \ EEx $ \ Bex a ^ * \ Al = \ Al (k_1, \ cdots, k_n) \ Al = \ sex {\ sum _ {I = 1} ^ n K_ I \ al_ I} \ Al \ quad \ sex {\ Al = (\ al_1, \ cdots, \ al_n) ^ t }, \ EEx $ \ Al $ is a feature vector of $ A ^ * $ that belongs to the feature value $ \ DPS {\ sum _ {I = 1} ^ n K_ I \ al_ I} $. if $ \ rank (A) = n-2 $, $ A ^ * = 0 $, $ \ Al $ is $ A ^ * $, which belongs to the feature vector with the feature value $0 $.

 

4. ($ 20' $) set $ \ Bex W = \ sed {f (x); F (1) = 0, f (x) \ In \ BBR [x] _ n }, \ EEx $ here $ \ BBR [x] _ n $ represents the linear space of the number of times on the real number field $ \ BBR $ is less than $ N $.

(1) proof: $ W $ is the linear subspaces of $ \ BBR [x] _ n $;

(2) Calculate the dimension of $ W $ and a group of bases.

Answer:

(1) apparently true.

(2) set $ \ Bex f (x) = A _ {n-1} x ^ {n-1} + \ cdots + a_0 \ in W, \ EEx $ then $ \ Bex a _ {n-1} + \ cdots + a_0 = 0, \ EEx $ basic solution $ \ Bex \ sex {\ BA {c}-1 \ 1 \ 0 \ vdots \ 0 \ EA }, \ quad \ sex {\ BA {c}-1 \ 0 \ 1 \ vdots \ 0 \ EA}, \ quad \ cdots, \ quad \ sex {\ BA {c}-1 \ 0 \ 0 \ vdots \ 1 \ EA }. \ EEx $ therefore, $ W $ has a dimension of $ n-1 $ with a base $ \ Bex-x ^ {n-1} + x ^ {N-2 }, -x ^ {n-1} + x ^ {n-3}, \ quad \ cdots, \ quad-x ^ {n-1} + 1. \ EEx $

 

5. ($ 20' $) known homogeneous linear equation $ \ Bex \ sedd {\ BA {rrrrrrc} (a_1 + B) x_1 & + & a_2x_2 & + & \ cdots & + & a_nx_n & = & 0, \ a_1x_1 & + & (A_2 + B) x_2 & + & \ cdots & + & a_nx_n & = & 0, \\\ cdots & \ a_1x_1 & + & a_2x_2 & + & \ cdots & + & (a_n + B) x_n & = & 0, \ EA} \ EEx $ where $ \ DPS {\ sum _ {I = 1} ^ n a_ I \ NEQ 0} $. when we discuss the relationship between $ A_1, \ cdots, a_n, and B $,

(1) The equations have only zero solutions?

(2) Are there non-zero solutions to the equations? When there is a non-zero solution, a basic solution of this equations is obtained.

Answer: coefficient Matrix $ \ Bex a =\sex {\ BA {CCC} a_1 + B & \ cdots & a_n \\ vdots & \ ddots & \ vdots \ A_1 & \ cdots & a_n + B \ EA} \ RRA \ sex {\ BA {CCCC} a_1 + B & A_2 & \ cdots & a_n \-B & \ cdots & 0 \\ \ vdots & \ ddots & \ vdots \-B & 0 & \ cdots & B \ EA }. \ EEx $ when $ B = 0 $, $ \ Bex a \ RRA \ sex {\ BA {CCC} A_1 & \ cdots & a_n \ 0 & \ cdots & 0 \ 0 & \ cdots & 0 \ EA}. \ EEx $ set by $ \ DPS {\ sum _ {I = 1} ^ n a_ I \ NEQ 0} $ a_$ a_n \ NEQ 0 $, $ \ rank (A) = 1 $, $ AX = 0 $ basic solution $ \ Bex \ sex {\ BA {c}-a_n \ 0 \ 0 \ vdots \ A_1 \ EA}, \ quad \ sex {\ BA {c} 0 \-a_n \ 0 \ vdots \ A_2 \ EA}, \ quad \ cdots, \ quad \ sex {\ BA {c} 0 \ vdots \ 0 \-a_n \ A _ {n-1} \ EA }. \ EEx $ when $ B \ NEQ 0 $, $ \ Bex a \ RRA \ sex {\ BA {CCCC} B + \ sum _ {I = 1} ^ n a_ I & 0 & \ cdots & 0 \-1 & 1 & \ cdots & 0 \ vdots & \ ddots & \ vdots \-1 & 0 & \ cdots & 1 \ EA }. \ EEx $ at this time, when $ \ DPS {B + \ sum _ {I = 1} ^ n a_ I \ NEQ 0} $, $ AX = 0 $ only has zero solution; when $ \ DPS {B + \ sum _ {I = 1} ^ n a_ I = 0} $, $ AX = 0 $ has a non-zero solution, the basic solution is $ \ Bex \ sex {\ BA {c} 1 \ vdots \ 1 \ EA }. \ EEx $

 

6. ($ 20' $) set a quadratic form $ \ Bex f (x) = X_1 ^ 2 + x_2 ^ 2 + X_3 ^ 2 + 2ax_1x_2 + 2bx_2x_3 + 2x_1x_3 \ EEx $ regular transformer $ x = py $ to standard type $ F = Y_2 ^ 2 + y_3 ^ 2 $, $ x = (x_1, x_2, X_3) ^ t $, $ Y = (y_1, Y_2, y_3) ^ t $ is a three-dimensional column vector, and $ p $ is a third-order orthogonal matrix.

(1) Evaluate the values of constants $ A and B $;

(2) orthogonal matrix $ p $.

Answer:

(1) From question, $ f (x) = x ^ tax $, $ \ Bex a =\sex {\ BA {CCC} 1 & A & 1 \ A & 1 & B \ 1 & B & 1 \ EA }, \ quad P ^ tap = \ diag \ sed {0, 1, 2 }. \ EEx $ \ Bex | E-A | = 0 \ ra-2AB = 0 \ rA AB = 0; \ quad | 2e-a | = 0 \ ra-(A + B) = 0. \ EEx $ and $ a = B = 0 $.

(2) by $ \ Bex 0e-a \ RRA \ sex {\ BA {CCC} 1 & 0 & 1 \ 0 & 0 \ 0 & 0 & 0 \ EA} \ EEx $ $ A $ feature vectors with feature values $0 $ \ Bex \ al_1 = \ sex {\ BA {c}-1 \ 0 \ 1 \ EA }. \ EEx $ by $ \ Bex E-A \ RRA \ sex {\ BA {CCC} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 0 \ EA} \ EEx $ $ A $ the feature vector that belongs to the feature value $1 $ is $ \ Bex \ Al_2 = \ sex {\ BA {c} 0 \ 1 \ \ 0 \ EA }. \ EEx $ by $ \ Bex 2e-a \ RRA \ sex {\ BA {CCC} 1 & 0 &-1 \ 0 & 1 & 0 \ 0 & 0 & 0 & 0 \ EA} \ EEx $ $ A $ the feature vector that belongs to the feature value $2 $ is $ \ Bex \ Al_3 = \ sex {\ BA {c} 1 \ 2 \ 1 \ EA }. \ EEx $ \ al_1, \ Al_2, \ Al_3 $ standard orthogonal form $ \ beex \ Bea \ beta_1 & =\ frac {\ al_1 }{|\ al_1 |}=\ sex {\ BA {CCC}-\ frac {1 }{\ SQRT {2 }}\\ 0 \\ frac {1 }{\ SQRT {2 }}\ EA }, \\\ beta_2 <=\ frac {\ Al_2-\ SEF {\ Al_2, \ beta_1 }\ beta_1 }{| \ Al_2-\ SEF {\ Al_2, \ beta_1 }\ beta_1 |}=\ sex {\ BA {CCC} 0 \ 1 \ 0 \ EA }, \\\ beta_3 & =\ frac {\ Al_3-\ SEF {\ Al_3, \ beta_1} \ beta_1-\ SEF {\ Al_3, \ beta_2 }\ beta_2 }{| \ Al_3-\ SEF {\ Al_3, \ beta_1} \ beta_1-\ SEF {\ Al_3, \ beta_2 }\ beta_2 |}=\ sex {\ BA {CCC} \ frac {1 }{\ SQRT {2 }}\ \ 0 \\ frac {1 }{\ SQRT {2 }}\ EA }. \ EEA \ eeex $ \ Bex P = (\ beta_1, \ beta_2, \ beta_3) = \ sex {\ BA {CCC}-\ frac {1} {\ SQRT {2 }}& 0 & \ frac {1} {\ SQRT {2 }}\ \ 0 & 1 & 0 \ frac {1 }{\ SQRT {2 }}& 0 & \ frac {1 }{\ SQRT {2 }}\ EA }, \ EEx $ P ^ tap = \ diag \ sed {0, 1, 2} $.

 

7. ($ 20' $) set $ W $ to the number field $ \ BBP $ upper $ N $ Dimension Linear Space $ V $'s sub-space, $ \ SCRA $ is a linear transformation of $ V $. $ \ scra w $ represents a subset of the images of the vectors in $ W $, make $ W_0 = W \ cap \ SCRA ^ {-1} (0) $, proof: $ \ Bex \ dim W = \ dim \ scra w + \ dim W_0. \ EEx $

Proof: Set $ \ al_1, \ cdots, \ al_r $ to a group of bases of $ W_0 $, and expand it to a group of bases of $ W $ \ al_1, \ cdots, \ al_r, \ beta_1, \ cdots, \ beta_s $. then $ \ bee \ label {313_7_eq} \ SCRA \ beta_1, \ cdots, \ SCRA \ beta_r \ mbox {linear independence, and it is a group of bases of} \ SCRA w \ mbox }. \ EEE $ \ Bex \ dim W = S + T = \ dim W_0 + \ dim \ SCRA v. \ EEx $ forward certificate \ eqref {313_7_eq }. on the one hand, $ \ beex \ Bea & \ quad \ sum _ {I = 1} ^ t K_ I \ SCRA \ beta_ I = 0 \ & \ Ra \ SCRA \ sex {\ sum _{ I = 1} ^ t K_ I \ beta_ I} = 0 \ & \ Ra \ sum _ {I = 1} ^ t K_ I \ beta_ I \ In w \ cap \ SCRA ^ {- 1} (0) = W_0 \ & \ Ra \ sum _ {I = 1} ^ t K_ I \ beta_ I = \ sum _ {j = 1} ^ r l_j \ al_j \ & \ rA K_ I = 0 \ quad \ sex {1 \ Leq I \ Leq t }; \ EEA \ eeex $ on the other hand, for $ \ forall \ Al \ in W $, $ \ Bex \ SCRA \ Al = \ SCRA \ sex {\ sum _ {j = 1} ^ rl_j \ al_j + \ sum _ {I = 1} ^ t K_ I \ beta_ I }=\ sum _ {j = 1} ^ tk_j \ SCRA \ beta_j. \ EEx $

 

8. ($15 '$) set $ A and C $ to $ N $ order positive definite matrix. If the matrix equation $ AX + XA = C $ has a unique solution $ B $. test Certificate: $ B $ Zhengding.

Proof: the conversion of $ AB + BA = C $ is $ \ Bex B ^ Ta + AB ^ t = C. \ EEx $ uniqueness of the solution, $ B ^ t = B $. therefore, $ B $ is a symmetric array. to verify that $ B $ is a positive definite array, you only need to verify any feature value of $ B $ \ lm> 0 $. set $ \ Al \ NEQ 0 $ to the corresponding feature vector, then $ \ beex \ Bea 0 & <\ Al ^ TC \ Al \ & = \ Al ^ t (AB + BA) \ Al \ & = \ Al ^ TA (B \ Al) + (B \ Al) ^ ta \ Al \ & = \ lm \ Al ^ ta \ Al + \ lm \ Al ^ ta \ Al \ & = 2 \ lm \ Al ^ ta \ Al. \ EEA \ eeex $

[Journal of mathematics, jiali] 313rd-Question of 2014 advanced algebra postgraduate exams of South China University of Technology

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.