leetcode--Longest palindrome substring

Source: Internet
Author: User

My first thought about this problem is that the character of a palindrome string, each of the characters (odd palindrome strings), or every two characters (even palindrome), begins to extend the analysis to both sides. In this process, the newest longest palindrome is constantly discovered. Obviously the complexity of this algorithm is O (n^2)

Class solution {public:string longestpalindrome (string s)  {//Center extension method Int maxlen;int  prev;int next;string result;maxlen = 0;//palindrome string is odd when for  (int i = 0;  i < s.size ();  i++) {prev = i;next = i;while  (true) {prev =  prev - 1;next = next + 1;if  (prev < 0 | |  next > s.size ()  - 1) {if  (next - 1)  -  (prev +  1)  + 1 > maxlen) {maxlen =  (next - 1)  -  (prev +  1)  + 1;result.assign (S, prev + 1, maxlen);} break;} if  (S[prev] != s[next]) {if  (next - 1)  -  (prev + 1)  +  1 > maxlen) {maxlen =  (next - 1)  -  (prev + 1)  +  1;result.assign (s, prev + 1,  maxlen);} Break;}}} Palindrome string is even when for  (Int i = 0; i < s.size ();  i++) {Prev = i;next  = i+1;if  (Prev >= 0 && next <= s.size ()  -  1 && s[prev] == s[next]) {while  (true) {prev = prev -  1;next = next + 1;if  (prev < 0 | |  next > s.size ()  - 1) {if  (next - 1)  -  (prev +  1)  + 1 > maxlen) {maxlen =  (next - 1)  -  (prev +  1)  + 1;result.assign (S, prev + 1, maxlen);} break;} if  (S[prev] != s[next]) {if  (next - 1)  -  (prev + 1)  +  1 > maxlen) {maxlen =  (next - 1)  -  (prev + 1)  +  1;result.assign (s, prev + 1, maxlen);} Break;}}}} return result;}};

====================================================================

The second method, use DP. This is collected on the Internet.

The substring of the back character string is also a palindrome, such as p[i,j] (indicating that the substring ending with J begins with I) is a palindrome string, then P[i+1,j-1] is also a palindrome string. So the longest palindrome string can be decomposed into a series of sub-problems. This requires additional space O (n^2), and the algorithm complexity is O (n^2).

First, the state equation and the transfer equation are defined:

P[i,j]=0 indicates that the substring [i,j] is not a palindrome string. P[i,j]=1 indicates that the substring [i,j] is a palindrome string.

P[i,i]=1

P[i,j]{=p[i+1,j-1],if (S[i]==s[j])

=0, if (S[i]!=s[j])

String Findlongestpalindrome (String &s) {const int length=s.size (); int Maxlength=0;int Start;bool P[50][50]={false };for (int i=0;i<length;i++)//initialization Preparation {p[i][i]=true;if (i<length-1&&s.at (i) ==s.at (i+1)) {P[i][i+1]=true ; start=i;maxlength=2;}} for (int len=3;len<length;len++)//substring length for (int i=0;i<=length-len;i++)//substring start address {int j=i+len-1;//substring end address if (P[i+1] [J-1]&&s.at (i) ==s.at (j)) {p[i][j]=true;maxlength=len;start=i;}} if (maxlength>=2) return s.substr (start,maxlength); return NULL;}


leetcode--Longest palindrome substring

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.