Pic2, Kernel Density Estimates

Source: Internet
Author: User

Kernel function estimation

Demo I

 

import sys,re,osimport numpy as npfrom scipy import stats import matplotlib.pylab as plt if __name__ == ‘__main__‘:    # random data    grade = [np.random.rand(100) * 100]    fig = plt.figure()        # KDE    ax1 = fig.add_subplot(211)    ind = np.arange(0.,100.,1)    gkde = stats.kde.gaussian_kde(grade, bw_method = ‘scott‘)    ax1.plot(ind, gkde(ind), label=‘Gods\‘ Grade‘, color="g")    ax1.set_title(‘Kernel Density Estimation‘)    ax1.legend()        # hisogram    ax2 = fig.add_subplot(212)    ax2.hist(grade, 100, range = (0,100), normed = True)    plt.show()

 

Demo II

Demo in scikit-learn

Http://scikit-learn.org/stable/auto_examples/neighbors/plot_kde_1d.html

 

# -*- coding: utf-8 -*-"""Created on Wed Oct 22 20:38:13 2014@author: dell"""# Author: Jake Vanderplas <[email protected]>#import numpy as npimport matplotlib.pyplot as pltfrom scipy.stats import normfrom sklearn.neighbors import KernelDensity#----------------------------------------------------------------------# Plot the progression of histograms to kernelsnp.random.seed(1)N = 20X = np.concatenate((np.random.normal(0, 1, 0.3 * N),                    np.random.normal(5, 1, 0.7 * N)))[:, np.newaxis]X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis]bins = np.linspace(-5, 10, 10)fig, ax = plt.subplots(2, 2, sharex=True, sharey=True)fig.subplots_adjust(hspace=0.05, wspace=0.05)# histogram 1ax[0, 0].hist(X[:, 0], bins=bins, fc=‘#AAAAFF‘, normed=True)ax[0, 0].text(-3.5, 0.31, "Histogram")# histogram 2ax[0, 1].hist(X[:, 0], bins=bins + 0.75, fc=‘#AAAAFF‘, normed=True)ax[0, 1].text(-3.5, 0.31, "Histogram, bins shifted")# tophat KDEkde = KernelDensity(kernel=‘tophat‘, bandwidth=0.75).fit(X)log_dens = kde.score_samples(X_plot)ax[1, 0].fill(X_plot[:, 0], np.exp(log_dens), fc=‘#AAAAFF‘)ax[1, 0].text(-3.5, 0.31, "Tophat Kernel Density")# Gaussian KDEkde = KernelDensity(kernel=‘gaussian‘, bandwidth=0.75).fit(X)log_dens = kde.score_samples(X_plot)ax[1, 1].fill(X_plot[:, 0], np.exp(log_dens), fc=‘#AAAAFF‘)ax[1, 1].text(-3.5, 0.31, "Gaussian Kernel Density")for axi in ax.ravel():    axi.plot(X[:, 0], np.zeros(X.shape[0]) - 0.01, ‘+k‘)    axi.set_xlim(-4, 9)    axi.set_ylim(-0.02, 0.34)for axi in ax[:, 0]:    axi.set_ylabel(‘Normalized Density‘)for axi in ax[1, :]:    axi.set_xlabel(‘x‘)#----------------------------------------------------------------------# Plot all available kernelsX_plot = np.linspace(-6, 6, 1000)[:, None]X_src = np.zeros((1, 1))fig, ax = plt.subplots(2, 3, sharex=True, sharey=True)fig.subplots_adjust(left=0.05, right=0.95, hspace=0.05, wspace=0.05)def format_func(x, loc):    if x == 0:        return ‘0‘    elif x == 1:        return ‘h‘    elif x == -1:        return ‘-h‘    else:        return ‘%ih‘ % xfor i, kernel in enumerate([‘gaussian‘, ‘tophat‘, ‘epanechnikov‘,                            ‘exponential‘, ‘linear‘, ‘cosine‘]):    axi = ax.ravel()[i]    log_dens = KernelDensity(kernel=kernel).fit(X_src).score_samples(X_plot)    axi.fill(X_plot[:, 0], np.exp(log_dens), ‘-k‘, fc=‘#AAAAFF‘)    axi.text(-2.6, 0.95, kernel)    axi.xaxis.set_major_formatter(plt.FuncFormatter(format_func))    axi.xaxis.set_major_locator(plt.MultipleLocator(1))    axi.yaxis.set_major_locator(plt.NullLocator())    axi.set_ylim(0, 1.05)    axi.set_xlim(-2.9, 2.9)ax[0, 1].set_title(‘Available Kernels‘)#----------------------------------------------------------------------# Plot a 1D density exampleN = 100np.random.seed(1)X = np.concatenate((np.random.normal(0, 1, 0.3 * N),                    np.random.normal(5, 1, 0.7 * N)))[:, np.newaxis]X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis]true_dens = (0.3 * norm(0, 1).pdf(X_plot[:, 0])             + 0.7 * norm(5, 1).pdf(X_plot[:, 0]))fig, ax = plt.subplots()ax.fill(X_plot[:, 0], true_dens, fc=‘black‘, alpha=0.2,        label=‘input distribution‘)for kernel in [‘gaussian‘, ‘tophat‘, ‘epanechnikov‘]:    kde = KernelDensity(kernel=kernel, bandwidth=0.5).fit(X)    log_dens = kde.score_samples(X_plot)    ax.plot(X_plot[:, 0], np.exp(log_dens), ‘-‘,            label="kernel = ‘{0}‘".format(kernel))ax.text(6, 0.38, "N={0} points".format(N))ax.legend(loc=‘upper left‘)ax.plot(X[:, 0], -0.005 - 0.01 * np.random.random(X.shape[0]), ‘+k‘)ax.set_xlim(-4, 9)ax.set_ylim(-0.02, 0.4)plt.show()

 

Pic2, Kernel Density Estimates

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.