Title Link: http://poj.org/problem?id=2533
Longest Ordered subsequence
Time Limit: 2000MS |
|
Memory Limit: 65536K |
Total Submissions: 35929 |
|
Accepted: 15778 |
Description
A Numeric sequence of
AIis ordered if
A1<
A2< ... <
an. Let the subsequence of the given numeric sequence (
A1,
A2, ...,
an) is any sequence (
Ai1,
AI2, ...,
AiK), where 1 <=
I1<
I2< ... <
IK<=
N. For example, sequence (1, 7, 3, 5, 9, 4, 8) have ordered Subsequences, E. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences is of length 4, e. g., (1, 3, 5, 8).
Your program, when given the numeric sequence, must find the length of its longest ordered.
Input
The first line of input file contains the length of sequence N. The second line contains the elements of sequence-n integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000
Output
Output file must contain a single integer-the length of the longest ordered subsequence of the given sequence.
Sample Input
71 7 3 5 9 4 8
Sample Output
4
To find the longest ascending sub-sequence
#include <stdio.h> #include <iostream> #include <math.h> #include <stdlib.h> #include < ctype.h> #include <algorithm> #include <vector> #include <string> #include <queue> #include <stack> #include <set> #include <map>using namespace Std;int n,p[1010],dp[1010];int main () {while ( scanf ("%d", &n)! = EOF) {for (int i = 1; I <= n; i++) scanf ("%d", &p[i]), for (int i = 1; I <= n; i++) {Dp[i] = 1 ; for (int j = 1; j < I; J + +) {if (P[i] > P[j]) dp[i] = max (Dp[i],dp[j] + 1);}} int ans = -1;for (int i = 1; I <= n; i++) ans = max (ans,dp[i]);p rintf ("%d\n", ans);} return 0;}
poj-2533 longest Ordered subsequence "longest ascending subsequence"