POJ 3233 Matrix Power Series Matrix Rapid Power + binary summation, poj3233
Matrix fast power, please refer to template http://www.cnblogs.com/pach/p/5978475.html
If sum = A + A2 + a3... + Ak is directly accumulated, it will definitely time out,
Sum = A + A2 +... + Ak/2 + A (k/2) * (A + A2 +... + Ak/2) When k is an even number;
Sum = A + A2 +... + A (k-1)/2 + A (k-1)/2) * (A + A2 +... + A (k-1)/2) + Ak k is an odd number.
Then recursive binary summation
PS: At the beginning, mat defined _ int64, so it contributed n times of TLE...
#include <iostream>#include <cstring>#include <cstdio>using namespace std;int n,m;const int N=55;struct Mat{ int mat[N][N];};Mat Multiply(Mat a, Mat b){ Mat c; memset(c.mat, 0, sizeof(c.mat)); for(int k = 0; k < n; ++k) for(int i = 0; i < n; ++i) if(a.mat[i][k]) for(int j = 0; j < n; ++j) if(b.mat[k][j]) c.mat[i][j] = (c.mat[i][j] +a.mat[i][k] * b.mat[k][j])%m; return c;}Mat QuickPower(Mat a, int k){ Mat c; memset(c.mat,0,sizeof(c.mat)); for(int i = 0; i < n; ++i) c.mat[i][i]=1; for(; k; k >>= 1) { if(k&1) c = Multiply(c,a); a = Multiply(a,a); } return c;}Mat Add(Mat a,Mat b){ for(int i=0; i<n; i++) for(int j=0; j<n; j++) a.mat[i][j]=(a.mat[i][j]+b.mat[i][j])%m; return a;}Mat Solve(Mat a,int k){ if(k==1) return a; Mat e,ret; memset(e.mat,0,sizeof(e.mat)); for(int i=0; i<n; i++) e.mat[i][i]=1; ret=Multiply(Add(e,QuickPower(a,k>>1)),Solve(a,k>>1)); if(k%2) return Add(ret,QuickPower(a,k)); return ret;}int main(){ //freopen("in.txt","r",stdin); int k; scanf("%d%d%d",&n,&k,&m); Mat a; for(int i=0; i<n; i++) for(int j=0; j<n; j++) scanf("%d",&a.mat[i][j]); Mat ans=Solve(a,k); for(int i=0; i<n; i++) { for(int j=0; j<n-1; j++) printf("%d ",ans.mat[i][j]); printf("%d\n",ans.mat[i][n-1]); } return 0;}