The generating array function of the introduction of NumPy functions

Source: Internet
Author: User

1, empty (shape[, Dtype, order])

Returns a new empty array based on the given shape and type (shape[, Dtype, order]).

Parameters:

Shape: integer or integral tuple

Defines the shape of the returned array;

Dtype: Data type, optional

Defines the type of the returned array.

Order: {' C ', ' F '}, optional

Specifies the order in which the array elements are stored in memory: C (C language)-row-major;f (Fortran) column-major.

1234567 >>> np.empty([22])array([[ -9.74499359e+0016.69583040e-309],2.13182611e-3143.06959433e-309]])    #random>>> np.empty([22], dtype=int)array([[-1073741821-1067949133],49604198619249760]])    #random
2. Empty_like (a)

Returns a new, empty array based on the shape and type of the given array (a).

Parameters:

A: Array

Its shape and type are used to specify the shape and type of the returned function.

return value:

Output: Ndarray

An array of the same shape and type as the array A.

1234 >>> a =np.array([[1., 2., 3.],[4.,5.,6.]])>>> np.empty_like(a)array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000], #random[ 4.38791518e-305, -2.00000715e+000, 4.17269252e-309]])
3. Eye (n[, M, K, Dtype])

Returns a two-dimensional array with a diagonal element of 1 and another element of 0.

Parameters:

N: Integer

Returns the number of rows in the array;

M: integer, optional

Returns the number of columns in the array. If you do not assign a value, the default equals n;

K: integer, optional

Diagonal Serial Number: 0 corresponds to the main diagonal, the integer corresponds to the upper diagonal, the negative numbers correspond to lower diagonal;

Dtype:dtype, optional

Returns the data type of the array

return value:

I:ndarray (N,M)

The element for the K-diagonal of the array is 1, and the other element is 0.

12345678 >>> np.eye(2, dtype=int)array([[1, 0],[0, 1]])>>> np.eye(3, k=1)array([[ 0., 1., 0.],[ 0., 0., 1.],[ 0., 0., 0.]])
4. Identity (n[, Dtype])

Returns an n-dimensional unit square.

Parameters:

N: Integer

Returns the number of rows of a phalanx;

Dtype: Data type, optional

Returns the data type of the square, by default, float.

return value:

Output: Ndarray

n x N unit square.

1234 >>> np.identity (/ Code>3 array ([[ 1. 0. 0. [ 0. 1. 0. [ 0. 0. 1.
5, Ones (shape[, Dtype, order])

Returns an array of all 1 elements of a new element, based on the given shape and type (shape[, Dtype, order]).

please refer to zeros for parameter setting.
1234567891011121314 >>> np.ones(5)array([ 1., 1., 1., 1., 1.]) >>> np.ones((5,), dtype=np.int)array([1, 1, 1, 1, 1]) >>> np.ones((2, 1))array([[ 1.],[ 1.]])>>> s =(2,2)>>> np.ones(s)array([[ 1., 1.],[ 1., 1.]])
6, Ones_like ()

Returns an array of all 1 elements of a new element, based on the shape and type of the given array (a).

equivalent to A.copy (). Fill (1), please refer to Zeros_like's documentation for specific use.
1234 >>> a =np.array([[1, 2, 3], [4, 5, 6]])>>> np.ones_like(a)array([[1, 1, 1],[1, 1, 1]])
7, zeros (shape[, Dtype, order])

Returns an array of all 0 elements of a new element, based on the given shape and type (shape[, Dtype, order]).

Parameters:

Shape:int or ints tuples;

Defines the shape of the returned array, such as: (2, 3), or 2.

Dtype: Data type, optional.

Returns the data type of the array, for example: Numpy.int8, default is Numpy.float64.

order:{' C ', ' F '}, optionally, returns the array as multidimensional, in which the elements are arranged in memory in C or Fortran order (row-or columnwise).

Output: Ndarray

An array of data types for the given shape.

123456789101112131415161718 >>> np.zeros(5)array([ 0., 0., 0., 0., 0.])>>> np.zeros((5,), dtype=numpy.int)array([0, 0, 0, 0, 0])>>> np.zeros((2, 1))array([[ 0.],[ 0.]])>>> s =(2,2)>>> np.zeros(s)array([[ 0., 0.],[ 0., 0.]])>>> np.zeros((2,), dtype=[(’x’, ’i4’), (’y’, ’i4’)]) # custom dtypearray([(0, 0), (0, 0)],dtype=[(’x’, ’<i4’), (’y’, ’<i4’)])
8. Zeros_like (a)

Returns an array of all 1 elements of a new element, based on the shape and type of the given array (a).

Equivalent to A.copy (). Fill (0).

Parameters:

A:array_like

Output: Ndarray

A 0 array that is consistent with the shape type of a array.

12345678910111213 >>> x =np.arange(6)>>> x =x.reshape((2, 3))>>> xarray([[0, 1, 2],[3, 4, 5]])>>> np.zeros_like(x)array([[0, 0, 0],[0, 0, 0]])>>> y =np.arange(3, dtype=np.float)>>> yarray([ 0., 1., 2.])>>> np.zeros_like(y)array([ 0., 0., 0.])

To be edited ....... ....... ...............

The generating array function of the introduction of NumPy functions

Related Article

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.