Wavio Sequence
Wavio is a sequence of integers. It has some interesting properties.
· Wavio is of odd length I. e.L = 2 * n + 1.
· The first(N + 1)Integers of wavio sequence makes a strictly increasing sequence.
· The Last(N + 1)Integers of wavio sequence makes a strictly decreasing sequence.
· No two adjacent integers are same in a wavio sequence.
For example1, 2, 3, 4, 5, 4, 3, 2, 0Is an wavio sequence of Length9.1, 2, 3, 4, 5, 4, 3, 2, 2Is not a valid wavio sequence. in this problem, you will be given a sequence of integers. you have to find out the length of the longest wavio sequence which is a subsequence of the given sequence. consider, the given sequence:
1 2 3 2 1 2 3 3 3 2 1 5 4 1 2 2 1.
Here the longest wavio sequence is:1 2 3 4 5 4 3 2 1. So, the output will be9.
Input
The input file contains less75Test cases. The description of each test case is given below: input is terminated by end of file.
Each set starts with a postive integer,N (1 <= n <= 10000). In next few lines there will beNIntegers.
Output
For each set of input print the length of longest wavio sequence in a line.
Sample input output for sample input
10 1 2 3 4 5 4 3 2 1 10 19 1 2 3 2 1 2 3 4 3 2 1 5 4 1 2 3 2 2 1 5 1 2 3 4 5 |
9 9 1 |
Problemsetter: Md. kamruzzaman, member of elite problemsetters 'panel
The maximum value of the maximum values in the longest ascending sequence (LIS) and longest descending sequence (LDS) of a sequence.
I started to write it directly with DP, And then it timed out. Later I saw someone saying that I would use binary to optimize the time complexity to O (N * logn ).
Use a stack s to save the smallest tail of LIS with the length of I. s [I] top is the top of the stack, that is, the length of the current Lis. Initial s [1] = A [1] Top = 1 Traversal whole sequence when a [I]> S [Top], a [I] goes into the stack in [I] = Top
Otherwise, search for the first subscript POS with a value greater than or equal to a [I] in the stack and replace it, which increases the growth potential of LIS in [I] = Pos;
In [I] indicates the length of lis at the end of a [I;
The process of finding the LDs is similar.
#include<cstdio>#include<cstring>#include<algorithm>using namespace std;const int N = 10005;int a[N], in[N], de[N], s[N], m, n, top, pos;int BinSearch (int k, int le, int ri){ while (le <= ri) { m = (le + ri) >> 1; if (s[m] >= k) ri = m - 1; else le = m + 1; } return ri + 1;}void lis(){ memset (s, 0, sizeof (s)); memset (in, 0, sizeof (in)); s[1] = a[1]; in[1] = top = 1; for (int i = 2; i <= n; ++i) { if (s[top] < a[i]) { s[++top] = a[i]; in[i] = top; } else { pos = BinSearch (a[i], 1, top); s[pos] = a[i]; in[i] = pos; } }}void lds(){ memset (s, 0, sizeof (s)); memset (de, 0, sizeof (de)); s[1] = a[n]; de[n] = top = 1; for (int i = n - 1; i >= 1; --i) { if (s[top] < a[i]) { s[++top] = a[i]; de[i] = top; } else { pos = BinSearch (a[i], 1, top); s[pos] = a[i]; de[i] = pos; } }}int main(){ while (scanf ("%d", &n) != EOF) { for (int i = 1; i <= n; ++i) scanf ("%d", &a[i]); int ans = 1; lis(); lds(); for (int i = 1; i <= n; ++i) { if (min (de[i], in[i]) > ans) ans = min (de[i], in[i]); } printf ("%d\n", ans * 2 - 1); } return 0;}
And the DP version of TLE.
#include<cstdio>#include<cstring>#include<algorithm>using namespace std;const int N=10005;int a[N],c[N],d[N],n;int dpde(int i){ if(d[i]) return d[i]; d[i]=1; for(int j=i;j<=n;++j) { if(a[i]>a[j]) d[i]=max(d[i],dpde(j)+1); } return d[i];}int dpin(int i){ if(c[i]) return c[i]; c[i]=1; for(int j=i;j>=1;--j) { if(a[i]>a[j]) c[i]=max(c[i],dpin(j)+1); } return c[i];}int main(){ while(scanf("%d",&n)!=EOF) { for(int i=1;i<=n;++i) scanf("%d",&a[i]); int ans=1; memset(d,0,sizeof(d)); memset(c,0,sizeof(c)); for(int i=1;i<=n;++i) { if(min(dpde(i),dpin(i))>ans) ans=min(d[i],c[i]); } printf("%d\n",ans*2-1); } return 0;}
Zookeeper
UV 10534 wavio sequence (longest incrementing sub-sequence DP binary)