188. Best Time to Buy and Sell Stock IV Leetcode Python

來源:互聯網
上載者:User

標籤:dp   python   leetcode   

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most k transactions.

Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

Credits:
Special thanks to @Freezen for adding this problem and creating all test cases.

Based on Dynamic planning 

maintain two vectors: gpro: to day i the maximum profit

                lpro: to day i the maximum profit with jth sell by day i

the complexity of this problem is O(k*n)

code is as follow:

class Solution:    # @return an integer as the maximum profit     def helper(self, prices):        pro = 0        for i in range(len(prices) - 1):            pro = max(pro, pro + prices[i+1] - prices[i])        return pro    def maxProfit(self, k, prices):        m = len(prices)        if m == 0:            return 0        if k >= m:### if k >=m this problem become best time to sell II            return self.helper(prices)        lpro = [0] * (k + 1)        gpro = [0] * (k + 1)        for i in range(len(prices) - 1):            dif = prices[i + 1] - prices[i]            j = k            while j >= 1:                lpro[j] = max(gpro[j-1]+max(0,dif), lpro[j] + dif)                gpro[j] = max(gpro[j], lpro[j])                j-=1        return gpro[k]



188. Best Time to Buy and Sell Stock IV Leetcode Python

相關文章

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.