標籤:style blog http java color strong
C. RMQ with ShiftsTime Limit: 1000msCase Time Limit: 1000msMemory Limit: 131072KB 64-bit integer IO format:
%lld Java class name:
Main
In the traditional RMQ (Range Minimum Query) problem, we have a static array A. Then for each query (L, R) (LR), we report the minimum value among A[L], A[L + 1], ..., A[R]. Note that the indices start from 1, i.e. the left-most element is A[1].
In this problem, the array A is no longer static: we need to support another operation
shift(
i1,
i2,
i3,...,
ik)(
i1 <
i2 < ... <
ik,
k > 1)
we do a left ``circular shift" of A[i1], A[i2], ..., A[ik].
For example, if A={6, 2, 4, 8, 5, 1, 4}, then shift(2, 4, 5, 7) yields {6, 8, 4, 5, 4, 1, 2}. After that, shift(1, 2) yields 8, 6, 4, 5, 4, 1, 2.
Input
There will be only one test case, beginning with two integers n, q ( 1n100, 000, 1q250, 000), the number of integers in array A, and the number of operations. The next line contains n positive integers not greater than 100,000, the initial elements in array A. Each of the next q lines contains an operation. Each operation is formatted as a string having no more than 30 characters, with no space characters inside. All operations are guaranteed to be valid.
Warning: The dataset is large, better to use faster I/O methods.
Output
For each query, print the minimum value (rather than index) in the requested range.
Sample Input
7 56 2 4 8 5 1 4query(3,7)shift(2,4,5,7)query(1,4)shift(1,2)query(2,2)
Sample Output
146
解題:RMQ問題,更新比較有新意。。。。。。。。。。
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cstdlib> 5 #include <vector> 6 #include <climits> 7 #include <algorithm> 8 #include <cmath> 9 #define LL long long10 using namespace std;11 const int maxn = 100010;12 struct node{13 int lt,rt,minVal;14 }tree[maxn<<2];15 int d[maxn],u[30],cnt;16 void build(int lt,int rt,int v){17 tree[v].lt = lt;18 tree[v].rt = rt;19 if(lt == rt){20 tree[v].minVal = d[lt];21 return;22 }23 int mid = (lt+rt)>>1;24 build(lt,mid,v<<1);25 build(mid+1,rt,v<<1|1);26 tree[v].minVal = min(tree[v<<1].minVal,tree[v<<1|1].minVal);27 }28 int query(int lt,int rt,int v){29 if(tree[v].lt == lt && tree[v].rt == rt) return tree[v].minVal;30 int mid = (tree[v].lt+tree[v].rt)>>1;31 if(rt <= mid) return query(lt,rt,v<<1);32 else if(lt > mid) return query(lt,rt,v<<1|1);33 else return min(query(lt,mid,v<<1),query(mid+1,rt,v<<1|1));34 }35 void update(int lt,int rt,int v){36 if(tree[v].lt == tree[v].rt){37 tree[v].minVal = d[tree[v].lt];38 return;39 }40 int mid = (tree[v].lt+tree[v].rt)>>1;41 if(u[rt] <= mid) update(lt,rt,v<<1);42 else if(u[lt] > mid) update(lt,rt,v<<1|1);43 else{44 int i;45 for(i = lt; u[i] <= mid; i++);46 update(lt,i-1,v<<1);47 update(i,rt,v<<1|1);48 }49 tree[v].minVal = min(tree[v<<1].minVal,tree[v<<1|1].minVal);50 }51 int main(){52 int n,m,i,j,len,temp;53 char str[100];54 while(~scanf("%d%d",&n,&m)){55 for(i = 1; i <= n; i++)56 scanf("%d",d+i);57 build(1,n,1);58 for(i = 0; i < m; i++){59 scanf("%s",str);60 len = strlen(str);61 for(cnt = j = 0; j < len;){62 if(str[j] < ‘0‘ || str[j] > ‘9‘) {j++;continue;}63 temp = 0;64 while(j < len && str[j] >= ‘0‘ && str[j] <= ‘9‘) {temp = temp*10 + (str[j]-‘0‘);j++;}65 u[cnt++] = temp;66 }67 if(str[0] == ‘q‘){68 printf("%d\n",query(u[0],u[1],1));69 }else{70 temp = d[u[0]];71 for(cnt--,j = 0; j < cnt; j++)72 d[u[j]] = d[u[j+1]];73 d[u[j]] = temp;74 update(0,cnt,1);75 }76 }77 }78 return 0;79 }
View Code