詳解Huffman編碼演算法之Java實現_java

來源:互聯網
上載者:User

Huffman編碼介紹

Huffman編碼處理的是字元以及字元對應的二進位的編碼配對問題,分為編碼和解碼,目的是壓縮字元對應的位元據長度。我們知道字元存貯和傳輸的時候都是二進位的(電腦只認識0/1),那麼就有字元與二進位之間的mapping關係。字元屬於字元集(Charset), 字元需要通過編碼(encode)為二進位進行存貯和傳輸,顯示的時候需要解碼(decode)回字元,字元集與編碼方法是一對多關聯性(Unicode可以用UTF-8,UTF-16等編碼)。理解了字元集,編碼以及解碼,滿天飛的亂碼問題也就遊刃而解了。以英文字母小寫a為例, ASCII編碼中,十進位為97,二進位為01100001。ASCII的每一個字元都用8個Bit(1Byte)編碼,假如有1000個字元要傳輸,那麼就要傳輸8000個Bit。問題來了,英文中字母e的使用頻率為12.702%,而z為0.074%,前者是後者的100多倍,但是確使用相同位元的二進位。可以做得更好,方法就是可變長度編碼,指導原則就是頻率高的用較短的位元編碼,頻率低的用較長位元編碼。Huffman編碼演算法就是處理這樣的問題。

Huffman編碼Java實現

Huffman編碼演算法主要用到的資料結構是完全二叉樹(full binary tree)和優先順序隊列。後者用的是Java.util.PriorityQueue,前者自己實現(都為內部類),代碼如下:

static class Tree {     private Node root;      public Node getRoot() {       return root;     }      public void setRoot(Node root) {       this.root = root;     }   }    static class Node implements Comparable<Node> {     private String chars = "";     private int frequence = 0;     private Node parent;     private Node leftNode;     private Node rightNode;      @Override     public int compareTo(Node n) {       return frequence - n.frequence;     }      public boolean isLeaf() {       return chars.length() == 1;     }      public boolean isRoot() {       return parent == null;     }      public boolean isLeftChild() {       return parent != null && this == parent.leftNode;     }      public int getFrequence() {       return frequence;     }      public void setFrequence(int frequence) {       this.frequence = frequence;     }      public String getChars() {       return chars;     }      public void setChars(String chars) {       this.chars = chars;     }      public Node getParent() {       return parent;     }      public void setParent(Node parent) {       this.parent = parent;     }      public Node getLeftNode() {       return leftNode;     }      public void setLeftNode(Node leftNode) {       this.leftNode = leftNode;     }      public Node getRightNode() {       return rightNode;     }      public void setRightNode(Node rightNode) {       this.rightNode = rightNode;     }   } 

統計資料

既然要按頻率來安排編碼錶,那麼首先當然得獲得頻率的統計資訊。我實現了一個方法處理這樣的問題。如果已經有統計資訊,那麼轉為Map<Character,Integer>即可。如果你得到的資訊是百分比,乘以100或1000,或10000。總是可以轉為整數。比如12.702%乘以1000為12702,Huffman編碼只關心大小問題。統計方法實現如下:

public static Map<Character, Integer> statistics(char[] charArray) {     Map<Character, Integer> map = new HashMap<Character, Integer>();     for (char c : charArray) {       Character character = new Character(c);       if (map.containsKey(character)) {         map.put(character, map.get(character) + 1);       } else {         map.put(character, 1);       }     }      return map;   } 

構建樹

構建樹是Huffman編碼演算法的核心步驟。思想是把所有的字元掛到一顆完全二叉樹的葉子節點,任何一個非頁子節點的左節點出現頻率不大於右節點。演算法為把統計資訊轉為Node存放到一個優先順序隊列裡面,每一次從隊列裡面彈出兩個最小頻率的節點,構建一個新的父Node(非葉子節點), 字元內容剛彈出來的兩個節點字元內容之和,頻率也是它們的和,最開始的彈出來的作為左子節點,後面一個作為右子節點,並且把剛構建的父節點放到隊列裡面。重複以上的動作N-1次,N為不同字元的個數(每一次隊列裡面個數減1)。結束以上步驟,隊列裡面剩一個節點,彈出作為樹的根節點。代碼如下:

private static Tree buildTree(Map<Character, Integer> statistics,       List<Node> leafs) {     Character[] keys = statistics.keySet().toArray(new Character[0]);      PriorityQueue<Node> priorityQueue = new PriorityQueue<Node>();     for (Character character : keys) {       Node node = new Node();       node.chars = character.toString();       node.frequence = statistics.get(character);       priorityQueue.add(node);       leafs.add(node);     }      int size = priorityQueue.size();     for (int i = 1; i <= size - 1; i++) {       Node node1 = priorityQueue.poll();       Node node2 = priorityQueue.poll();        Node sumNode = new Node();       sumNode.chars = node1.chars + node2.chars;       sumNode.frequence = node1.frequence + node2.frequence;        sumNode.leftNode = node1;       sumNode.rightNode = node2;        node1.parent = sumNode;       node2.parent = sumNode;        priorityQueue.add(sumNode);     }      Tree tree = new Tree();     tree.root = priorityQueue.poll();     return tree;   } 

編碼

某個字元對應的編碼為,從該字元所在的葉子節點向上搜尋,如果該字元節點是父節點的左節點,編碼字元之前加0,反之如果是右節點,加1,直到根節點。只要擷取了字元和二進位碼之間的mapping關係,編碼就非常簡單。代碼如下:

public static String encode(String originalStr,       Map<Character, Integer> statistics) {     if (originalStr == null || originalStr.equals("")) {       return "";     }      char[] charArray = originalStr.toCharArray();     List<Node> leafNodes = new ArrayList<Node>();     buildTree(statistics, leafNodes);     Map<Character, String> encodInfo = buildEncodingInfo(leafNodes);      StringBuffer buffer = new StringBuffer();     for (char c : charArray) {       Character character = new Character(c);       buffer.append(encodInfo.get(character));     }      return buffer.toString();   } private static Map<Character, String> buildEncodingInfo(List<Node> leafNodes) {     Map<Character, String> codewords = new HashMap<Character, String>();     for (Node leafNode : leafNodes) {       Character character = new Character(leafNode.getChars().charAt(0));       String codeword = "";       Node currentNode = leafNode;        do {         if (currentNode.isLeftChild()) {           codeword = "0" + codeword;         } else {           codeword = "1" + codeword;         }          currentNode = currentNode.parent;       } while (currentNode.parent != null);        codewords.put(character, codeword);     }      return codewords;   } 

解碼

因為Huffman編碼演算法能夠保證任何的二進位碼都不會是另外一個碼的首碼,解碼非常簡單,依次取出二進位的每一位,從樹根向下搜尋,1向右,0向左,到了葉子節點(命中),退回根節點繼續重複以上動作。代碼如下:

public static String decode(String binaryStr,       Map<Character, Integer> statistics) {     if (binaryStr == null || binaryStr.equals("")) {       return "";     }      char[] binaryCharArray = binaryStr.toCharArray();     LinkedList<Character> binaryList = new LinkedList<Character>();     int size = binaryCharArray.length;     for (int i = 0; i < size; i++) {       binaryList.addLast(new Character(binaryCharArray[i]));     }      List<Node> leafNodes = new ArrayList<Node>();     Tree tree = buildTree(statistics, leafNodes);      StringBuffer buffer = new StringBuffer();      while (binaryList.size() > 0) {       Node node = tree.root;        do {         Character c = binaryList.removeFirst();         if (c.charValue() == '0') {           node = node.leftNode;         } else {           node = node.rightNode;         }       } while (!node.isLeaf());        buffer.append(node.chars);     }      return buffer.toString();   } 

測試以及比較

以下測試Huffman編碼的正確性(先編碼,後解碼,包括中文),以及Huffman編碼與常見的字元編碼的二進位字串比較。代碼如下:

public static void main(String[] args) {     String oriStr = "Huffman codes compress data very effectively: savings of 20% to 90% are typical, "         + "depending on the characteristics of the data being compressed. 中華崛起";     Map<Character, Integer> statistics = statistics(oriStr.toCharArray());     String encodedBinariStr = encode(oriStr, statistics);     String decodedStr = decode(encodedBinariStr, statistics);      System.out.println("Original sstring: " + oriStr);     System.out.println("Huffman encoed binary string: " + encodedBinariStr);     System.out.println("decoded string from binariy string: " + decodedStr);      System.out.println("binary string of UTF-8: "         + getStringOfByte(oriStr, Charset.forName("UTF-8")));     System.out.println("binary string of UTF-16: "         + getStringOfByte(oriStr, Charset.forName("UTF-16")));     System.out.println("binary string of US-ASCII: "         + getStringOfByte(oriStr, Charset.forName("US-ASCII")));     System.out.println("binary string of GB2312: "         + getStringOfByte(oriStr, Charset.forName("GB2312")));   }    public static String getStringOfByte(String str, Charset charset) {     if (str == null || str.equals("")) {       return "";     }      byte[] byteArray = str.getBytes(charset);     int size = byteArray.length;     StringBuffer buffer = new StringBuffer();     for (int i = 0; i < size; i++) {       byte temp = byteArray[i];       buffer.append(getStringOfByte(temp));     }      return buffer.toString();   }    public static String getStringOfByte(byte b) {     StringBuffer buffer = new StringBuffer();     for (int i = 7; i >= 0; i--) {       byte temp = (byte) ((b >> i) & 0x1);       buffer.append(String.valueOf(temp));     }      return buffer.toString();   } 

以上就是本文的全部內容,希望對大家的學習有所協助,也希望大家多多支援雲棲社區。

相關文章

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.