這是一個建立於 的文章,其中的資訊可能已經有所發展或是發生改變。
Google的tensorflow雖然提供了go版本,但是官方的說法是:
TensorFlow provides APIs for use in Go programs. These APIs are particularly well-suited to loading models created in Python and executing them within a Go application.
意思是go的庫只是用來裝載python建立的模型,然後執行的,而且在go版本api的godoc中也寫到:
The tensorflow package currently does not have the ability to export a model to a directory from Go. This function thus currently targets loading models exported in other languages, such as using tf.saved_model.builder in Python. See: https://www.tensorflow.org/code/tensorflow/python/saved_model/
說go不能將模型匯出,而且現階段go版本的api沒有直接建立variable的op,但是通過實驗可以發現其實是可以使用的,先看/tensorflow/core/ops/state_ops.cc
中variable這個op的聲明:
REGISTER_OP("VariableV2") .Output("ref: Ref(dtype)") .Attr("shape: shape") .Attr("dtype: type") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetIsStateful() .SetShapeFn(shape_inference::ExplicitShape) .Doc(R"doc(Holds state in the form of a tensor that persists across steps.Outputs a ref to the tensor state so it may be read or modified.TODO(zhifengc/mrry): Adds a pointer to a more detail documentabout sharing states in tensorflow.ref: A reference to the variable tensor.shape: The shape of the variable tensor.dtype: The type of elements in the variable tensor.container: If non-empty, this variable is placed in the given container. Otherwise, a default container is used.shared_name: If non-empty, this variable is named in the given bucket with this shared_name. Otherwise, the node name is used instead.)doc");
然後觀察/tensorflow/go/op/wrappers.go
中調用類似的一個op叫placeholder的方法:
// A placeholder op that passes through `input` when its output is not fed.//// Arguments:// input: The default value to produce when `output` is not fed.// shape: The (possibly partial) shape of the tensor.//// Returns A placeholder tensor that defaults to `input` if it is not fed.func PlaceholderWithDefault(scope *Scope, input tf.Output, shape tf.Shape) (output tf.Output) { if scope.Err() != nil { return } attrs := map[string]interface{}{"shape": shape} opspec := tf.OpSpec{ Type: "PlaceholderWithDefault", Input: []tf.Input{ input, }, Attrs: attrs, } op := scope.AddOperation(opspec) return op.Output(0)}
可以看到使用tf.OpSpec
結構體,並且對特定格式把參數裝進去就可以,經過實驗,添加一個Variable的變數op到一個Scope是成功的。以此,在go版本上面做出optimizer等訓練需要的東西,只需要自己封裝好梯度計算的op,然後對變數進行增改op,完全可以做出一個擁有tensorflow-python版完整功能的api庫。
另外,有一點是官方編譯的libtensorflow.so檔案裡面是缺少contrib的內容的,具體解決辦法是在tensorflow/BUILD
檔案(r1.3)的以下小節加入依賴:
cc_binary( name = "libtensorflow.so", linkopts = select({ "//tensorflow:darwin": [ "-Wl,-exported_symbols_list", # This line must be directly followed by the exported_symbols.lds file "//tensorflow/c:exported_symbols.lds", ], "//tensorflow:windows": [], "//tensorflow:windows_msvc": [], "//conditions:default": [ "-z defs", "-s", "-Wl,--version-script", # This line must be directly followed by the version_script.lds file "//tensorflow/c:version_script.lds", ], }), linkshared = 1, deps = [ "//tensorflow/contrib:contrib_kernels", #Add "//tensorflow/contrib:contrib_ops_op_lib", #Add "//tensorflow/c:c_api", "//tensorflow/c:exported_symbols.lds", "//tensorflow/c:version_script.lds", "//tensorflow/core:tensorflow", ],)