多線程是這樣一種機制,它允許在程式中並發執行多個指令流,每個指令流都稱為一個線程,彼此間互相獨立。 一:理解多線程 多線程是這樣一種機制,它允許在程式中並發執行多個指令流,每個指令流都稱為一個線程,彼此間互相獨立。 線程又稱為輕量級進程,它和進程一樣擁有獨立的執行控制,由作業系統負責調度,區別在於線程沒有獨立的儲存空間,而是和所屬進程中的其它線程共用一個儲存空間,這使得線程間的通訊遠較進程簡單。 多個線程的執行是並發的,也就是在邏輯上“同時”,而不管是否是物理上的“同時”。如果系統只有一個CPU,那麼真正的“同時”是不可能的,但是由於CPU的速度非常快,使用者感覺不到其中的區別,因此我們也不用關心它,只需要設想各個線程是同時執行即可。 多線程和傳統的單線程在程式設計上最大的區別在於,由於各個線程的控制流程彼此獨立,使得各個線程之間的代碼是亂序執行的,由此帶來的線程調度,同步等問題,將在以後探討。 二:在Java中實現多線程 我們不妨設想,為了建立一個新的線程,我們需要做些什嗎?很顯然,我們必須指明這個線程所要執行的代碼,而這就是在Java中實現多線程我們所需要做的一切! 真是神奇!Java是如何做到這一點的?通過類!作為一個完全物件導向的語言,Java提供了類 java.lang.Thread 來方便多線程編程,這個類提供了大量的方法來方便我們控制自己的各個線程,我們以後的討論都將圍繞這個類進行。 那麼如何提供給 Java 我們要線程執行的代碼呢?讓我們來看一看 Thread 類。Thread 類最重要的方法是 run() ,它為Thread 類的方法 start() 所調用,提供我們的線程所要執行的代碼。為了指定我們自己的代碼,只需要覆蓋它! 方法一:繼承 Thread 類,覆蓋方法 run(),我們在建立的 Thread 類的子類中重寫 run() ,加入線程所要執行的代碼即可。下面是一個例子: public class MyThread extends Thread { int count= 1, number; public MyThread(int num) { number = num; System.out.println("建立線程 " + number); } public void run() { while(true) { System.out.println("線程 " + number + ":計數 " + count); if(++count== 6) return; } } public static void main(String args[]) { for(int i = 0; i < 5; i++) new MyThread(i+1).start(); } } 這種方法簡單明了,符合大家的習慣,但是,它也有一個很大的缺點,那就是如果我們的類已經從一個類繼承(如小程式必須繼承自 Applet 類),則無法再繼承 Thread 類,這時如果我們又不想建立一個新的類,應該怎麼辦呢? 我們不妨來探索一種新的方法:我們不建立 Thread 類的子類,而是直接使用它,那麼我們只能將我們的方法作為參數傳遞給 Thread 類的執行個體,有點類似回呼函數。但是 Java 沒有指標,我們只能傳遞一個包含這個方法的類的執行個體。那麼如何限制這個類必須包含這一方法呢?當然是使用介面!(雖然抽象類別也可滿足,但是需要繼承,而我們之所以要採用這種新方法,不就是為了避免繼承帶來的限制嗎?) Java 提供了介面 java.lang.Runnable 來支援這種方法。 方法二:實現 Runnable 介面 Runnable 介面只有一個方法 run(),我們聲明自己的類實現 Runnable 介面並提供這一方法,將我們的線程代碼寫入其中,就完成了這一部分的任務。但是 Runnable 介面並沒有任何對線程的支援,我們還必須建立 Thread 類的執行個體,這一點通過 Thread 類的建構函式public Thread(Runnable target);來實現。下面是一個例子: public class MyThread implements Runnable { int count= 1, number; public MyThread(int num) { number = num; System.out.println("建立線程 " + number); } public void run() { while(true) { System.out.println("線程 " + number + ":計數 " + count); if(++count== 6) return; } } public static void main(String args[]) { for(int i = 0; i < 5; i++) new Thread(new MyThread(i+1)).start(); } } 嚴格地說,建立 Thread 子類的執行個體也是可行的,但是必須注意的是,該子類必須沒有覆蓋 Thread 類的 run 方法,否則該線程執行的將是子類的 run 方法,而不是我們用以實現Runnable 介面的類的 run 方法,對此大家不妨實驗一下。 使用 Runnable 介面來實現多線程使得我們能夠在一個類中包容所有的代碼,有利於封裝,它的缺點在於,我們只能使用一套代碼,若想建立多個線程並使各個線程執行不同的代碼,則仍必須額外建立類,如果這樣的話,在大多數情況下也許還不如直接用多個類分別繼承 Thread 來得緊湊。 綜上所述,兩種方法各有千秋,大家可以靈活運用。 下面讓我們一起來研究一下多線程使用中的一些問題。 三:線程的四種狀態 1. 新狀態:線程已被建立但尚未執行(start() 尚未被調用)。 2. 可執行狀態:線程可以執行,雖然不一定正在執行。CPU 時間隨時可能被分配給該線程,從而使得它執行。 3. 死亡狀態:正常情況下 run() 返回使得線程死亡。調用 stop()或 destroy() 亦有同樣效果,但是不被推薦,前者會產生異常,後者是強制終止,不會釋放鎖。 4. 阻塞狀態:線程不會被分配 CPU 時間,無法執行。 四:線程的優先順序 線程的優先順序代表該線程的重要程度,當有多個線程同時處於可執行狀態並等待獲得 CPU 時間時,線程調度系統根據各個線程的優先順序來決定給誰分配 CPU 時間,優先順序高的線程有更大的機會獲得 CPU 時間,優先順序低的線程也不是沒有機會,只是機會要小一些罷了。 你可以調用 Thread 類的方法 getPriority() 和 setPriority()來存取線程的優先順序,線程的優先順序界於1(MIN_PRIORITY)和10(MAX_PRIORITY)之間,預設是5(NORM_PRIORITY)。 五:線程的同步 由於同一進程的多個線程共用同一片儲存空間,在帶來方便的同時,也帶來了存取違規這個嚴重的問題。Java語言提供了專門機制以解決這種衝突,有效避免了同一個資料對象被多個線程同時訪問。 由於我們可以通過 private 關鍵字來保證資料對象只能被方法訪問,所以我們只需針對方法提出一套機制,這套機制就是 synchronized 關鍵字,它包括兩種用法:synchronized 方法和 synchronized 塊。 1. synchronized 方法:通過在方法聲明中加入 synchronized關鍵字來聲明 synchronized 方法。如: public synchronized void accessVal(int newVal); synchronized 方法控制對類成員變數的訪問:每個類執行個體對應一把鎖,每個 synchronized 方法都必須獲得調用該方法的類執行個體的鎖方能執行,否則所屬線程阻塞,方法一旦執行,就獨佔該鎖,直到從該方法返回時才將鎖釋放,此後被阻塞的線程方能獲得該鎖,重新進入可執行狀態。這種機制確保了同一時刻對於每一個類執行個體,其所有聲明為 synchronized 的成員函數中至多隻有一個處於可執行狀態(因為至多隻有一個能夠獲得該類執行個體對應的鎖),從而有效避免了類成員變數的存取違規(只要所有可能訪問類成員變數的方法均被聲明為 synchronized)。 在 Java 中,不光是類執行個體,每一個類也對應一把鎖,這樣我們也可將類的靜態成員函式宣告為 synchronized ,以控制其對類的靜態成員變數的訪問。 synchronized 方法的缺陷:若將一個大的方法聲明為synchronized 將會大大影響效率,典型地,若將線程類的方法 run() 聲明為 synchronized ,由於線上程的整個生命期內它一直在運行,因此將導致它對本類任何 synchronized 方法的調用都永遠不會成功。當然我們可以通過將訪問類成員變數的代碼放到專門的方法中,將其聲明為 synchronized ,並在主方法中調用來解決這一問題,但是 Java 為我們提供了更好的解決辦法,那就是 synchronized 塊。 2. synchronized 塊:通過 synchronized關鍵字來聲明synchronized 塊。文法如下: synchronized(syncObject) { //允許存取控制的代碼 } synchronized 塊是這樣一個代碼塊,其中的代碼必須獲得對象 syncObject (如前所述,可以是類執行個體或類)的鎖方能執行,具體機制同前所述。由於可以針對任意代碼塊,且可任意指定上鎖的對象,故靈活性較高。 六:線程的阻塞 為瞭解決對共用儲存區的存取違規,Java 引入了同步機制,現在讓我們來考察多個線程對共用資源的訪問,顯然同步機制已經不夠了,因為在任意時刻所要求的資源不一定已經準備好了被訪問,反過來,同一時刻準備好了的資源也可能不止一個。為瞭解決這種情況下的存取控制問題,Java 引入了對阻塞機制的支援。 阻塞指的是暫停一個線程的執行以等待某個條件發生(如某資源就緒),學過作業系統的同學對它一定已經很熟悉了。Java 提供了大量方法來支援阻塞,下面讓我們逐一分析。 1. sleep() 方法:sleep() 允許 指定以毫秒為單位的一段時間作為參數,它使得線程在指定的時間內進入阻塞狀態,不能得到CPU 時間,指定的時間一過,線程重新進入可執行狀態。 典型地,sleep() 被用在等待某個資源就緒的情形:測試發現條件不滿足後,讓線程阻塞一段時間後重新測試,直到條件滿足為止。 2. suspend() 和 resume() 方法:兩個方法配套使用,suspend()使得線程進入阻塞狀態,並且不會自動回復,必須其對應的resume() 被調用,才能使得線程重新進入可執行狀態。典型地,suspend() 和 resume() 被用在等待另一個線程產生的結果的情形:測試發現結果還沒有產生後,讓線程阻塞,另一個線程產生了結果後,調用 resume() 使其恢複。 3. yield() 方法:yield() 使得線程放棄當前分得的 CPU 時間,但是不使線程阻塞,即線程仍處於可執行狀態,隨時可能再次分得 CPU 時間。調用 yield() 的效果等價於發送器認為該線程已執行了足夠的時間從而轉到另一個線程。 4. wait() 和 notify() 方法:兩個方法配套使用,wait() 使得線程進入阻塞狀態,它有兩種形式,一種允許 指定以毫秒為單位的一段時間作為參數,另一種沒有參數,前者當對應的 notify() 被調用或者超出指定時間時線程重新進入可執行狀態,後者則必須對應的 notify() 被調用。 初看起來它們與 suspend() 和 resume() 方法對沒有什麼分別,但是事實上它們是截然不同的。區別的核心在於,前面敘述的所有方法,阻塞時都不會釋放佔用的鎖(如果佔用了的話),而這一對方法則相反。 上述的核心區別導致了一系列的細節上的區別。 首先,前面敘述的所有方法都隸屬於 Thread 類,但是這一對卻直接隸屬於 Object 類,也就是說,所有對象都擁有這一對方法。初看起來這十分不可思議,但是實際上卻是很自然的,因為這一對方法阻塞時要釋放佔用的鎖,而鎖是任何對象都具有的,調用任意對象的 wait() 方法導致線程阻塞,並且該對象上的鎖被釋放。而調用 任意對象的notify()方法則導致因調用該對象的 wait() 方法而阻塞的線程中隨機播放的一個解除阻塞(但要等到獲得鎖後才真正可執行)。 其次,前面敘述的所有方法都可在任何位置調用,但是這一對方法卻必須在 synchronized 方法或塊中調用,理由也很簡單,只有在synchronized 方法或塊中當前線程才佔有鎖,才有鎖可以釋放。同樣的道理,調用這一對方法的對象上的鎖必須為當前線程所擁有,這樣才有鎖可以釋放。因此,這一對方法調用必須放置在這樣的 synchronized 方法或塊中,該方法或塊的上鎖對象就是調用這一對方法的對象。若不滿足這一條件,則程式雖然仍能編譯,但在運行時會出現IllegalMonitorStateException 異常。 wait() 和 notify() 方法的上述特性決定了它們經常和synchronized 方法或塊一起使用,將它們和作業系統的處理序間通訊機製作一個比較就會發現它們的相似性:synchronized方法或塊提供了類似於作業系統原語的功能,它們的執行不會受到多線程機制的幹擾,而這一對方法則相當於 block 和wakeup 原語(這一對方法均聲明為 synchronized)。它們的結合使得我們可以實現作業系統上一系列精妙的處理序間通訊的演算法(如訊號量演算法),並用於解決各種複雜的線程間通訊問題。 關於 wait() 和 notify() 方法最後再說明兩點: 第一:調用 notify() 方法導致解除阻塞的線程是從因調用該對象的 wait() 方法而阻塞的線程中隨機選取的,我們無法預料哪一個線程將會被選擇,所以編程時要特別小心,避免因這種不確定性而產生問題。 第二:除了 notify(),還有一個方法 notifyAll() 也可起到類似作用,唯一的區別在於,調用 notifyAll() 方法將把因調用該對象的 wait() 方法而阻塞的所有線程一次性全部解除阻塞。當然,只有獲得鎖的那一個線程才能進入可執行狀態。 談到阻塞,就不能不談一談死結,略一分析就能發現,suspend() 方法和不指定逾時期限的 wait() 方法的調用都可能產生死結。遺憾的是,Java 並不在語言層級上支援死結的避免,我們在編程中必須小心地避免死結。 以上我們對 Java 中實現線程阻塞的各種方法作了一番分析,我們重點分析了 wait() 和 notify() 方法,因為它們的功能最強大,使用也最靈活,但是這也導致了它們的效率較低,較容易出錯。實際使用中我們應該靈活使用各種方法,以便更好地達到我們的目的。 七:守護線程 守護線程是一類特殊的線程,它和普通線程的區別在於它並不是應用程式的核心部分,當一個應用程式的所有非守護線程終止運行時,即使仍然有守護線程在運行,應用程式也將終止,反之,只要有一個非守護線程在運行,應用程式就不會終止。守護線程一般被用於在後台為其它線程提供服務。 可以通過調用方法 isDaemon() 來判斷一個線程是否是守護線程,也可以調用方法 setDaemon() 來將一個線程設為守護線程。 八:線程組 線程組是一個 Java 特有的概念,在 Java 中,線程組是類ThreadGroup 的對象,每個線程都隸屬於唯一一個線程組,這個線程組線上程建立時指定並線上程的整個生命期內都不能更改。你可以通過調用包含 ThreadGroup 型別參數的 Thread 類建構函式來指定線程屬的線程組,若沒有指定,則線程預設地隸屬於名為 system 的系統線程組。 在 Java 中,除了預建的系統線程組外,所有線程組都必須顯式建立。在 Java 中,除系統線程組外的每個線程組又隸屬於另一個線程組,你可以在建立線程組時指定其所隸屬的線程組,若沒有指定,則預設地隸屬於系統線程組。這樣,所有線程組組成了一棵以系統線程組為根的樹。 Java 允許我們對一個線程組中的所有線程同時進行操作,比如我們可以通過調用線程組的相應方法來設定其中所有線程的優先順序,也可以啟動或阻塞其中的所有線程。 Java 的線程組機制的另一個重要作用是安全執行緒。線程組機制允許我們通過分組來區分有不同安全特性的線程,對不同組的線程進行不同的處理,還可以通過線程組的分層結構來支援不對等安全措施的採用。Java 的 ThreadGroup 類提供了大量的方法來方便我們對線程組樹中的每一個線程組以及線程組中的每一個線程進行操作。 |