POJ 1861 & ZOJ 1542 Network(最小產生樹之Krusal)

來源:互聯網
上載者:User

標籤:arc   main   geometry   org   desc   script   nsa   pop   sample   

題目連結:

PKU:http://poj.org/problem?id=1861

ZJU:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=542


Description

Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have access to the whole network, each hub must be accessible by cables from any other hub (with possibly some intermediate hubs). 
Since cables of different types are available and shorter ones are cheaper, it is necessary to make such a plan of hub connection, that the maximum length of a single cable is minimal. There is another problem — not each hub can be connected to any other one because of compatibility problems and building geometry limitations. Of course, Andrew will provide you all necessary information about possible hub connections. 
You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied. 

Input

The first line of the input contains two integer numbers: N - the number of hubs in the network (2 <= N <= 1000) and M - the number of possible hub connections (1 <= M <= 15000). All hubs are numbered from 1 to N. The following M lines contain information about possible connections - the numbers of two hubs, which can be connected and the cable length required to connect them. Length is a positive integer number that does not exceed 106. There will be no more than one way to connect two hubs. A hub cannot be connected to itself. There will always be at least one way to connect all hubs.

Output

Output first the maximum length of a single cable in your hub connection plan (the value you should minimize). Then output your plan: first output P - the number of cables used, then output P pairs of integer numbers - numbers of hubs connected by the corresponding cable. Separate numbers by spaces and/or line breaks.

Sample Input

4 61 2 11 3 11 4 22 3 13 4 12 4 1

Sample Output

141 21 32 33 4

Source

Northeastern Europe 2001, Northern Subregion


題意:

有n個頂點,m條邊,每條邊都是雙向的,而且有一定的長度。要求使每一個頂點都連通,而且要使總長度最短,

輸出最大邊、邊的總數和所選擇的邊。

PS:

貌似題目的案例有點問題,卡了好久!

應該輸出的是:

1
3
1 3
2 3
2 4


代碼例如以下:

#include <cstdio>#include <cstring>#include <algorithm>using namespace std;const int maxn = 15017;int father[maxn];struct edge{    int x,y,v;};struct edge ed[maxn],ansa[maxn];bool cmp(edge a,edge b){    return a.v<b.v;}int find(int x){    if(x==father[x])        return x;    return father[x]=find(father[x]);}void Krusal(int n,int m){    int i,fx,fy,cnt;    int ans=0;    for(i = 1; i <= n; i++)        father[i]=i;    sort(ed,ed+m,cmp);//對邊的排序    cnt=0;    int max=-1;    for(i=0; i<m; i++)    {        fx=find(ed[i].x);        fy=find(ed[i].y);        if(fx!=fy)        {            ans+=ed[i].v;            father[fx]=fy;            ansa[cnt].x=ed[i].x;            ansa[cnt++].y=ed[i].y;            if(max<ed[i].v)                max=ed[i].v;        }    }    printf("%d\n%d\n",max,cnt);    for(i=0; i<cnt; i++)        printf("%d %d\n",ansa[i].x,ansa[i].y);}int main(){    int t;    int n, m;    int a, b, k;    while(scanf("%d %d",&n,&m)!=EOF)    {        for(int i = 0; i < m; i++)        {            scanf("%d %d %d",&a,&b,&k);            ed[i].x=a,ed[i].y=b,ed[i].v=k;        }        Krusal(n,m);    }    return 0;}


POJ 1861 &amp; ZOJ 1542 Network(最小產生樹之Krusal)

相關文章

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.