標籤:int size sleep package bin asp argparse idt truncate
[硬體環境]
RaspberryPi 3代B型(英國版)
[軟體環境]
作業系統:Raspbian
Python版本:2.7.3
Python庫:
1.1) opencv-python(3.2.0.6)
[搭建過程]
OpenCV Python庫:
1. pip安裝
[相關代碼(暫時未驗證,去掉了作者原代碼中的DROPBOX自動上傳部分)]
pi_surveillance.py
# USAGE# python pi_surveillance.py --conf conf.json# import the necessary packagesfrom pyimagesearch.tempimage import TempImagefrom picamera.array import PiRGBArray # picamera(CANT BE IMPORTED ON WINDOWS PLATFORM)from picamera import PiCamera # picamera(CANT BE IMPORTED ON WINDOWS PLATFORM)import argparseimport warningsimport datetimeimport imutilsimport jsonimport timeimport cv2# construct the argument parser and parse the argumentsap = argparse.ArgumentParser()ap.add_argument("-c", "--conf", required=True, help="path to the JSON configuration file")args = vars(ap.parse_args())# filter warnings, load the configuration and initialize the Dropbox clientwarnings.filterwarnings("ignore")conf = json.load(open(args["conf"]))client = None# initialize the camera and grab a reference to the raw camera capturecamera = PiCamera()camera.resolution = tuple(conf["resolution"])camera.framerate = conf["fps"]rawCapture = PiRGBArray(camera, size=tuple(conf["resolution"]))# allow the camera to warmup, then initialize the average frame, last# uploaded timestamp, and frame motion counterprint "[INFO] warming up..."time.sleep(conf["camera_warmup_time"])avg = NonelastUploaded = datetime.datetime.now()motionCounter = 0# capture frames from the camerafor f in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True): # grab the raw NumPy array representing the image and initialize # the timestamp and occupied/unoccupied text frame = f.array timestamp = datetime.datetime.now() text = "Unoccupied" # resize the frame, convert it to grayscale, and blur it frame = imutils.resize(frame, width=500) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (21, 21), 0) # if the average frame is None, initialize it if avg is None: print "[INFO] starting background model..." avg = gray.copy().astype("float") rawCapture.truncate(0) continue # accumulate the weighted average between the current frame and # previous frames, then compute the difference between the current # frame and running average cv2.accumulateWeighted(gray, avg, 0.5) frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg)) # threshold the delta image, dilate the thresholded image to fill # in holes, then find contours on thresholded image thresh = cv2.threshold(frameDelta, conf["delta_thresh"], 255, cv2.THRESH_BINARY)[1] thresh = cv2.dilate(thresh, None, iterations=2) (cnts, _) = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # loop over the contours for c in cnts: # if the contour is too small, ignore it if cv2.contourArea(c) < conf["min_area"]: continue # compute the bounding box for the contour, draw it on the frame, # and update the text (x, y, w, h) = cv2.boundingRect(c) cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) text = "Occupied" # draw the text and timestamp on the frame ts = timestamp.strftime("%A %d %B %Y %I:%M:%S%p") cv2.putText(frame, "Room Status: {}".format(text), (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) cv2.putText(frame, ts, (10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0, 255), 1) # check to see if the room is occupied if text == "Occupied": # check to see if enough time has passed between uploads if (timestamp - lastUploaded).seconds >= conf["min_upload_seconds"]: # increment the motion counter motionCounter += 1 # check to see if the number of frames with consistent motion is # high enough if motionCounter >= conf["min_motion_frames"]: # check to see if dropbox sohuld be used if conf["use_dropbox"]: # write the image to temporary file t = TempImage() cv2.imwrite(t.path, frame) # upload the image to Dropbox and cleanup the tempory image print "[UPLOAD] {}".format(ts) path = "{base_path}/{timestamp}.jpg".format( base_path=conf["dropbox_base_path"], timestamp=ts) client.put_file(path, open(t.path, "rb")) t.cleanup() # update the last uploaded timestamp and reset the motion # counter lastUploaded = timestamp motionCounter = 0 # otherwise, the room is not occupied else: motionCounter = 0 # check to see if the frames should be displayed to screen if conf["show_video"]: # display the security feed cv2.imshow("Security Feed", frame) key = cv2.waitKey(1) & 0xFF # if the `q` key is pressed, break from the lop if key == ord("q"): break # clear the stream in preparation for the next frame rawCapture.truncate(0)
conf.json
{ "show_video": true, "use_dropbox": true, "dropbox_key": "YOUR_DROPBOX_KEY", "dropbox_secret": "YOUR_DROPBOX_SECRET", "dropbox_base_path": "YOUR_DROPBOX_APP_PATH", "min_upload_seconds": 3.0, "min_motion_frames": 8, "camera_warmup_time": 2.5, "delta_thresh": 5, "resolution": [640, 480], "fps": 16, "min_area": 5000}
tempimage.py
# import the necessary packagesimport uuidimport osclass TempImage: def __init__(self, basePath="./", ext=".jpg"): # construct the file path self.path = "{base_path}/{rand}{ext}".format(base_path=basePath, rand=str(uuid.uuid4()), ext=ext) def cleanup(self): # remove the file os.remove(self.path)
Python調用OpenCV實現網路攝影機的運動檢測[樹莓派版]