原文地址:http://blog.csdn.net/ariesjzj/article/details/7546930
現有兩組樣本資料,假如它們分別基於兩套不同的方法,或者測於不同的裝置,又或是出自兩個人之手,如何證明它們有或沒有顯著性差別呢?當然可以拿個Excel表把資料畫個圖,然後找一堆人來投票,看覺得差不多還是覺得差得多的人哪方票數高。但終歸這種做法有些主觀,不夠說明力。機率統計給出了一種更為客觀的基於統計的方法,這裡是一個Python的實現:
#!/usr/bin/python# Paired difference hypothesis testing - Student's t-test# Author: Jin Zhuojun# History: Create Tue May 8 16:12:21 CST 2012import stringimport mathimport sysfrom scipy.stats import timport matplotlib.pyplot as pltimport numpy as np############### Parameters ###############ver = 1verbose = 0alpha = 0.05def usage(): print """ usage: ./program data_file(one sample in one line) """def main(): ########## # Sample # ########## if (len(sys.argv) < 2): usage() sys.exit() # f = open('./data.txt') # f = open('./test.txt') f = open(sys.argv[1]) try: sample1_text = f.readline() sample2_text = f.readline() finally: f.close() if (verbose): print("sample1 text: ", sample1_text) print("sample2 text: ", sample2_text) sample1_text_split = sample1_text.split() sample2_text_split = sample2_text.split() if (verbose): print(sample1_text_split) print(sample2_text_split) print("len = ", len(sample1_text_split)) assert(len(sample1_text_split) == len(sample2_text_split)) sample_len = len(sample1_text_split) sample1 = [] sample2 = [] for i in range(sample_len): sample1.append(string.atof(sample1_text_split[i])) sample2.append(string.atof(sample2_text_split[i])) sample_diff = [] for i in range(sample_len): sample_diff.append(sample1[i] - sample2[i]) if (verbose): print("sample_diff = ", sample_diff) ###################### # Hypothesis testing # ###################### sample = sample_diff numargs = t.numargs [ df ] = [sample_len - 1,] * numargs if (verbose): print("df(degree of freedom, student's t distribution parameter) = ", df) sample_mean = np.mean(sample) sample_std = np.std(sample, dtype=np.float64, ddof=1) if (verbose): print("mean = %f, std = %f" % (sample_mean, sample_std)) abs_t = math.fabs( sample_mean / (sample_std / math.sqrt(sample_len)) ) if (verbose): print("t = ", abs_t) t_alpha_percentile = t.ppf(1 - alpha / 2, df) if (verbose): print("abs_t = ", abs_t) print("t_alpha_percentile = ", t_alpha_percentile) if (abs_t >= t_alpha_percentile): print "REJECT the null hypothesis" else: print "ACCEPT the null hypothesis" ######## # Plot # ######## rv = t(df) limit = np.minimum(rv.dist.b, 5) x = np.linspace(-1 * limit, limit) h = plt.plot(x, rv.pdf(x)) plt.xlabel('x') plt.ylabel('t(x)') plt.title('Difference significance test') plt.grid(True) plt.axvline(x = t_alpha_percentile, ymin = 0, ymax = 0.095, linewidth=2, color='r') plt.axvline(x = abs_t, ymin = 0, ymax = 0.6, linewidth=2, color='g') plt.annotate(r'(1 - $\alpha$ / 2) percentile', xy = (t_alpha_percentile, 0.05), xytext=(t_alpha_percentile + 0.5, 0.09), arrowprops=dict(facecolor = 'black', shrink = 0.05),) plt.annotate('t value', xy = (abs_t, 0.26), xytext=(abs_t + 0.5, 0.30), arrowprops=dict(facecolor = 'black', shrink = 0.05),) leg = plt.legend(('Student\'s t distribution', r'(1 - $\alpha$ / 2) percentile', 't value'), 'upper left', shadow = True) frame = leg.get_frame() frame.set_facecolor('0.80') for i in leg.get_texts(): i.set_fontsize('small') for l in leg.get_lines(): l.set_linewidth(1.5) normalized_sample = [0] * sample_len for i in range(0, sample_len): normalized_sample[i] = (sample[i] - sample_mean) / (sample_std / math.sqrt(sample_len)) plt.plot(normalized_sample, [0] * len(normalized_sample), 'ro') plt.show()if __name__ == "__main__": main()
註:因為matplotlib顯示時座標比例老是不對,所以畫圖的時候把座標寫死了。
把上面的指令碼存為main.py,再如資料檔案為data.txt(每行表示一組樣本):
0.26 0.30 0.40 0.49 0.43 0.84 1.18 0.25 0.67
0.18 0.33 0.57 0.32 0.58 0.29 0.98 0.17 0.79
運行:
$ ./main.py data.txt
得到
這裡假設null hypothesis為兩組資料無顯著性差異,alternative hypothesis為有顯著性差異。,t value落在了拒絕域外,因此我們拒絕alternative hypothesis,接受null hypothesis,即兩組資料無顯著性差異。