一、演算法
1、演算法的主要思想就是將一個中綴運算式(Infix expression)轉換成便於處理的尾碼運算式(Postfix expression),然後藉助於棧這個簡單的資料結構,計算出運算式的結果。
2、關於如何講普通的運算式轉換成尾碼運算式,以及如何處理尾碼運算式並計算出結果的具體演算法描述不在此敘述了,書上有詳細的說明。
二、簡易計算機
使用說明
使用該計算機類的簡單樣本如下:
# usagec = Calculator()print('result: {:f}'.formart(c.get_result('1.11+2.22-3.33*4.44/5.55')))# output:result: 0.666000
測試案例
為了對這個計算機進行有效地檢驗,設計了幾組測試案例,測試結果如下:
Test No.1: (1.11) = 1.110000Test No.2: 1.11+2.22-3.33*4.44/5.55 = 0.666000Test No.3: 1.11+(2.22-3.33)*4.44/5.55 = 0.222000Test No.4: 1.11+(2.22-3.33)*(4.44+5.55)/6.66 = -0.555000Test No.5: 1.11*((2.22-3.33)*(4.44+5.55))/(6.66+7.77) = -0.852992Test No.6: (1.11+2.22)*(3.33+4.44)/5.55*6.66 = 31.048920Test No.7: (1.11-2.22)/(3.33+4.44)/5.55*(6.66+7.77)/(8.88) = -0.041828Test No.8: Error: (1.11+2.22)*(3.33+4.44: missing ")", please check your expressionTest No.9: Error: (1.11+2.22)*3.33/0+(34-45): divisor cannot be zeroTest No.10: Error: 12+89^7: invalid character: ^
實現代碼
棧的實現
棧實際上就是一個被限制操作的表,所有的操作只能在棧的頂端(入棧、出棧等),以下是使用Python代碼實現的簡單的棧:
class Stack(object): """ The structure of a Stack. The user don't have to know the definition. """ def __init__(self): self.__container = list() def __is_empty(self): """ Test if the stack is empty or not :return: True or False """ return len(self.__container) == 0 def push(self, element): """ Add a new element to the stack :param element: the element you want to add :return: None """ self.__container.append(element) def top(self): """ Get the top element of the stack :return: top element """ if self.__is_empty(): return None return self.__container[-1] def pop(self): """ Remove the top element of the stack :return: None or the top element of the stack """ return None if self.__is_empty() else self.__container.pop() def clear(self): """ We'll make an empty stack :return: self """ self.__container.clear() return self
計算機類的實現
在計算機類中,我們將運算式的合法性驗證單獨放在一個函數中完成,但是實際上如果需要,也可以直接放在中綴運算式轉尾碼運算式的函數中實現,這樣只需要一次遍曆運算式即可同時完成驗證和轉換工作。但是為了保持結構清晰,還是分開來實現比較好,每個函數儘可能最好一件事情才是比較實在的。
在該計算機類中,有很多種極端的情況沒有被考慮進去,因為那樣的話整個實現的代碼會更多。不過,可以在後期為整個類繼續擴充,添加新的功能也是可以的。目前實現的就是主要架構,包括基本的錯誤偵測和運算,重點時學習運用棧這個看似簡單卻強大的資料結構解決問題。
class Calculator(object): """ A simple calculator, just for fun """ def __init__(self): self.__exp = '' def __validate(self): """ We have to make sure the expression is legal. 1. We only accept the `()` to specify the priority of a sub-expression. Notes: `[ {` and `] }` will be replaced by `(` and `)` respectively. 2. Valid characters should be `+`, `-`, `*`, `/`, `(`, `)` and numbers(int, float) - Invalid expression examples, but we can only handle the 4th case. The implementation will be much more sophisticated if we want to handle all the possible cases.: 1. `a+b-+c` 2. `a+b+-` 3. `a+(b+c` 4. `a+(+b-)` 5. etc :return: True or False """ if not isinstance(self.__exp, str): print('Error: {}: expression should be a string'.format(self.__exp)) return False # Save the non-space expression val_exp = '' s = Stack() for x in self.__exp: # We should ignore the space characters if x == ' ': continue if self.__is_bracket(x) or self.__is_digit(x) or self.__is_operators(x) \ or x == '.': if x == '(': s.push(x) elif x == ')': s.pop() val_exp += x else: print('Error: {}: invalid character: {}'.format(self.__exp, x)) return False if s.top(): print('Error: {}: missing ")", please check your expression'.format(self.__exp)) return False self.__exp = val_exp return True def __convert2postfix_exp(self): """ Convert the infix expression to a postfix expression :return: the converted expression """ # highest priority: () # middle: * / # lowest: + - converted_exp = '' stk = Stack() for x in self.__exp: if self.__is_digit(x) or x == '.': converted_exp += x elif self.__is_operators(x): converted_exp += ' ' tp = stk.top() if tp: if tp == '(': stk.push(x) continue x_pri = self.__get_priority(x) tp_pri = self.__get_priority(tp) if x_pri > tp_pri: stk.push(x) elif x_pri == tp_pri: converted_exp += stk.pop() + ' ' stk.push(x) else: while stk.top(): if self.__get_priority(stk.top()) != x_pri: converted_exp += stk.pop() + ' ' else: break stk.push(x) else: stk.push(x) elif self.__is_bracket(x): converted_exp += ' ' if x == '(': stk.push(x) else: while stk.top() and stk.top() != '(': converted_exp += stk.pop() + ' ' stk.pop() # pop all the operators while stk.top(): converted_exp += ' ' + stk.pop() + ' ' return converted_exp def __get_result(self, operand_2, operand_1, operator): if operator == '+': return operand_1 + operand_2 elif operator == '-': return operand_1 - operand_2 elif operator == '*': return operand_1 * operand_2 elif operator == '/': if operand_2 != 0: return operand_1 / operand_2 else: print('Error: {}: divisor cannot be zero'.format(self.__exp)) return None def __calc_postfix_exp(self, exp): """ Get the result from a converted postfix expression e.g. 6 5 2 3 + 8 * + 3 + * :return: result """ assert isinstance(exp, str) stk = Stack() exp_split = exp.strip().split() for x in exp_split: if self.__is_operators(x): # pop two top numbers in the stack r = self.__get_result(stk.pop(), stk.pop(), x) if r is None: return None else: stk.push(r) else: # push the converted number to the stack stk.push(float(x)) return stk.pop() def __calc(self): """ Try to get the result of the expression :return: None or result """ # Validate if self.__validate(): # Convert, then run the algorithm to get the result return self.__calc_postfix_exp(self.__convert2postfix_exp()) else: return None def get_result(self, expression): """ Get the result of an expression Suppose we have got a valid expression :return: None or result """ self.__exp = expression.strip() return self.__calc() """ Utilities """ @staticmethod def __is_operators(x): return x in ['+', '-', '*', '/'] @staticmethod def __is_bracket(x): return x in ['(', ')'] @staticmethod def __is_digit(x): return x.isdigit() @staticmethod def __get_priority(op): if op in ['+', '-']: return 0 elif op in ['*', '/']: return 1
總結
以上就是利用Python實現簡單四則運算計算機的全部內容,希望本文的內容對大家的學習或者工作能有所協助,如果有疑問大家可以留言交流。
參考
《資料結構與演算法(C語言)》上相關章節演算法描述