一、numpy概述
numpy(Numerical Python)提供了python對多維陣列對象的支援:ndarray,具有向量運算能力,快速、節省空間的。numpy支援進階大量的維度數組與矩陣運算,此外也針對數組運算提供大量的數學函數庫。 二、建立ndarray數組
ndarray:N維數組對象(矩陣),所有元素必須是相同類型。
ndarray屬性:ndim屬性,表示維度個數;shape屬性,表示各維度大小;dtype屬性,表示資料類型。
建立ndarray數組函數:
程式碼範例:
# -*- coding: utf-8 -*-import numpy;print '使用列表產生一維數組'data = [1,2,3,4,5,6]x = numpy.array(data)print x #列印數組print x.dtype #列印數組元素的類型print '使用列表產生二維數組'data = [[1,2],[3,4],[5,6]]x = numpy.array(data)print x #列印數組print x.ndim #列印數組的維度print x.shape #列印數組各個維度長度。shape是一個元組print '使用zero/ones/empty建立數組:根據shape來建立'x = numpy.zeros(6) #建立一維長度為6的,元素都是0一維數組print xx = numpy.zeros((2,3)) #建立一維長度為2,二維長度為3的二維0數組print xx = numpy.ones((2,3)) #建立一維長度為2,二維長度為3的二維1數組print xx = numpy.empty((3,3)) #建立一維長度為2,二維長度為3,未初始化的二維數組print xprint '使用arrange產生連續元素'print numpy.arange(6) # [0,1,2,3,4,5,] 開區間print numpy.arange(0,6,2) # [0, 2,4]
三、指定ndarray數組元素的類型
NumPy資料類型:
程式碼範例:
print '產生指定元素類型的數組:設定dtype屬性'x = numpy.array([1,2.6,3],dtype = numpy.int64)print x # 元素類型為int64print x.dtypex = numpy.array([1,2,3],dtype = numpy.float64)print x # 元素類型為float64print x.dtypeprint '使用astype複製數組,並轉換類型'x = numpy.array([1,2.6,3],dtype = numpy.float64)y = x.astype(numpy.int32)print y # [1 2 3]print x # [ 1. 2.6 3. ]z = y.astype(numpy.float64)print z # [ 1. 2. 3.]print '將字串元素轉換為數值元素'x = numpy.array(['1','2','3'],dtype = numpy.string_)y = x.astype(numpy.int32)print x # ['1' '2' '3']print y # [1 2 3] 若轉換失敗會拋出異常print '使用其他數組的資料類型作為參數'x = numpy.array([ 1., 2.6,3. ],dtype = numpy.float32);y = numpy.arange(3,dtype=numpy.int32);print y # [0 1 2]print y.astype(x.dtype) # [ 0. 1. 2.]
四、ndarray的向量化計算
向量運算:相同大小的數組鍵間的運算應用在元素上
向量和標量運算:“廣播”— 將標量“廣播”到各個元素
程式碼範例:
print 'ndarray數組與標量/數組的運算'x = numpy.array([1,2,3]) print x*2 # [2 4 6]print x>2 # [False False True]y = numpy.array([3,4,5])print x+y # [4 6 8]print x>y # [False False False]
五、ndarray數組的基本索引和切片
一維數組的索引:與Python的清單索引功能相似
多維陣列的索引: arr[r1:r2, c1:c2] arr[1,1] 等價 arr[1][1] [:] 代表某個維度資料
程式碼範例:
print 'ndarray的基本索引'x = numpy.array([[1,2],[3,4],[5,6]])print x[0] # [1,2]print x[0][1] # 2,普通python數組的索引print x[0,1] # 同x[0][1],ndarray數組的索引x = numpy.array([[[1, 2], [3,4]], [[5, 6], [7,8]]])print x[0] # [[1 2],[3 4]]y = x[0].copy() # 產生一個副本z = x[0] # 未產生一個副本print y # [[1 2],[3 4]]print y[0,0] # 1y[0,0] = 0 z[0,0] = -1print y # [[0 2],[3 4]]print x[0] # [[-1 2],[3 4]]print z # [[-1 2],[3 4]]print 'ndarray的切片'x = numpy.array([1,2,3,4,5])print x[1:3] # [2,3] 右邊開區間print x[:3] # [1,2,3] 左邊預設為 0print x[1:] # [2,3,4,5] 右邊預設為元素個數print x[0:4:2] # [1,3] 下標遞增2x = numpy.array([[1,2],[3,4],[5,6]])print x[:2] # [[1 2],[3 4]]print x[:2,:1] # [[1],[3]]x[:2,:1] = 0 # 用標量賦值print x # [[0,2],[0,4],[5,6]]x[:2,:1] = [[8],[6]] # 用數組賦值print x # [[8,2],[6,4],[5,6]]
六、ndarray數組的布爾索引和花式索引
布爾索引:使用布爾數組作為索引。arr[condition],condition為一個條件/多個條件組成的布爾數組。
布爾型索引程式碼範例:
print 'ndarray的布爾型索引'x = numpy.array([3,2,3,1,3,0])# 布爾型數組的長度必須跟被索引的軸長度一致y = numpy.array([True,False,True,False,True,False]) print x[y] # [3,3,3] print x[y==False] # [2,1,0]print x>=3 # [ True False True False True False]print x[~(x>=3)] # [2,1,0]print (x==2)|(x==1) # [False True False True False False]print x[(x==2)|(x==1)] # [2 1]x[(x==2)|(x==1)] = 0print x # [3 0 3 0 3 0]
花式索引:使用整型數組作為索引。
花式索引程式碼範例:
print 'ndarray的花式索引:使用整型數組作為索引'x = numpy.array([1,2,3,4,5,6])print x[[0,1,2]] # [1 2 3]print x[[-1,-2,-3]] # [6,5,4]x = numpy.array([[1,2],[3,4],[5,6]])print x[[0,1]] # [[1,2],[3,4]]print x[[0,1],[0,1]] # [1,4] 列印x[0][0]和x[1][1]print x[[0,1]][:,[0,1]] # 列印01行的01列 [[1,2],[3,4]]# 使用numpy.ix_()函數增強可讀性print x[numpy.ix_([0,1],[0,1])] #同上 列印01行的01列 [[1,2],[3,4]]x[[0,1],[0,1]] = [0,0]print x # [[0,2],[3,0],[5,6]]
七、ndarray數組的轉置和軸對換
數組的轉置/軸對換隻會返回來源資料的一個視圖,不會對來源資料進行修改。
程式碼範例:
print 'ndarray數組的轉置和軸對換'k = numpy.arange(9) #[0,1,....8]m = k.reshape((3,3)) # 改變數組的shape複製產生2維的,每個維度長度為3的數組print k # [0 1 2 3 4 5 6 7 8]print m # [[0 1 2] [3 4 5] [6 7 8]]# 轉置(矩陣)數組:T屬性 : mT[x][y] = m[y][x]print m.T # [[0 3 6] [1 4 7] [2 5 8]]# 計算矩陣的內積 xTxprint numpy.dot(m,m.T) # numpy.dot點乘# 高維數組的軸對象k = numpy.arange(8).reshape(2,2,2)print k # [[[0 1],[2 3]],[[4 5],[6 7]]]print k[1][0][0]# 軸變換 transpose 參數:由軸編號組成的元組m = k.transpose((1,0,2)) # m[y][x][z] = k[x][y][z]print m # [[[0 1],[4 5]],[[2 3],[6 7]]]print m[0][1][0]# 軸交換 swapaxes (axes:軸),參數:一對軸編號m = k.swapaxes(0,1) # 將第一個軸和第二個軸交換 m[y][x][z] = k[x][y][z]print m # [[[0 1],[4 5]],[[2 3],[6 7]]]print m[0][1][0]# 使用軸交換進行數組矩陣轉置m = numpy.arange(9).reshape((3,3))print m # [[0 1 2] [3 4 5] [6 7 8]]print m.swapaxes(1,0) # [[0 3 6] [1 4 7] [2 5 8]]
八、ndarray通用函數
通用函數(ufunc)是一種對ndarray中的資料執行元素級運算的函數。
一元ufunc:
一元ufunc程式碼範例:
print '一元ufunc樣本'x = numpy.arange(6)print x # [0 1 2 3 4 5]print numpy.square(x) # [ 0 1 4 9 16 25]x = numpy.array([1.5,1.6,1.7,1.8])y,z = numpy.modf(x)print y # [ 0.5 0.6 0.7 0.8]print z # [ 1. 1. 1. 1.]
二元ufunc:
二元ufunc程式碼範例:
print '二元ufunc樣本'x = numpy.array([[1,4],[6,7]])y = numpy.array([[2,3],[5,8]])print numpy.maximum(x,y) # [[2,4],[6,8]]print numpy.minimum(x,y) # [[1,3],[5,7]]
九、NumPy的where函數使用
np.where(condition, x, y),第一個參數為一個布爾數組,第二個參數和第三個參數可以是標量也可以是數組。
程式碼範例:
print 'where函數的使用'cond = numpy.array([True,False,True,False])x = numpy.where(cond,-2,2)print x # [-2 2 -2 2]cond = numpy.array([1,2,3,4])x = numpy.where(cond>2,-2,2)print x # [ 2 2 -2 -2]y1 = numpy.array([-1,-2,-3,-4])y2 = numpy.array([1,2,3,4])x = numpy.where(cond>2,y1,y2) # 長度須匹配print x # [1,2,-3,-4]print 'where函數的嵌套使用'y1 = numpy.array([-1,-2,-3,-4,-5,-6])y2 = numpy.array([1,2,3,4,5,6])y3 = numpy.zeros(6)cond = numpy.array([1,2,3,4,5,6])x = numpy.where(cond>5,y3,numpy.where(cond>2,y1,y2))print x # [ 1. 2. -3. -4. -5. 0.]
十、ndarray常用的統計方法
可以通過這些基本統計方法對整個數組/某個軸的資料進行統計計算。
程式碼範例:
print 'numpy的基本統計方法'x = numpy.array([[1,2],[3,3],[1,2]]) #同一維度上的數組長度須一致print x.mean() # 2print x.mean(axis=1) # 對每一行的元素求平均print x.mean(axis=0) # 對每一列的元素求平均print x.sum() #同理 12print x.sum(axis=1) # [3 6 3]print x.max() # 3print x.max(axis=1) # [2 3 2]print x.cumsum() # [ 1 3 6 9 10 12]print x.cumprod() # [ 1 2 6 18 18 36]
用於布爾數組的統計方法: sum : 統計數組/數組某一維度中的True的個數 any: 統計數組/數組某一維度中是否存在一個/多個True all:統計數組/數組某一維度中是否都是True
程式碼範例:
print '用於布爾數組的統計方法'x = numpy.array([[True,False],[True,False]])print x.sum() # 2print x.sum(axis=1) # [1,1]print x.any(axis=0) # [True,False]print x.all(axis=1) # [False,False]
使用sort對數組/數組某一維度進行就地排序(會修改數組本身)。
程式碼範例:
print '.sort的就地排序'x = numpy.array([[1,6,2],[6,1,3],[1,5,2]])x.sort(axis=1) print x # [[1 2 6] [1 3 6] [1 2 5]]#非就地排序:numpy.sort()可產生數組的副本
十一、ndarray數組的去重以及集合運算
程式碼範例:(方法傳回型別為一維數組(1d))
print 'ndarray的唯一化和集合運算'x = numpy.array([[1,6,2],[6,1,3],[1,5,2]])print numpy.unique(x) # [1,2,3,5,6]y = numpy.array([1,6,5])print numpy.in1d(x,y) # [ True True False True True False True True False]print numpy.setdiff1d(x,y) # [2 3]print numpy.intersect1d(x,y) # [1 5 6]
十二、numpy中的線性代數
import numpy.linalg 模組。線性代數(linear algebra)
常用的numpy.linalg模組函數:
程式碼範例:
print '線性代數'import numpy.linalg as nlaprint '矩陣點乘'x = numpy.array([[1,2],[3,4]])y = numpy.array([[1,3],[2,4]])print x.dot(y) # [[ 5 11][11 25]]print numpy.dot(x,y) # # [[ 5 11][11 25]]print '矩陣求逆'x = numpy.array([[1,1],[1,2]])y = nla.inv(x) # 矩陣求逆(若矩陣的逆存在)print x.dot(y) # 單位矩陣 [[ 1. 0.][ 0. 1.]]print nla.det(x) # 求行列式
十三、numpy中的隨機數產生
import numpy.random模組。
常用的numpy.random模組函數:
程式碼範例:
print 'numpy.random隨機數產生'import numpy.random as nprx = npr.randint(0,2,size=100000) #拋硬幣print (x>0).sum() # 正面的結果print npr.normal(size=(2,2)) #常態分佈隨機數數組 shape = (2,2)
十四、ndarray數組重塑
程式碼範例:
print 'ndarray數組重塑'x = numpy.arange(0,6) #[0 1 2 3 4]print x #[0 1 2 3 4]print x.reshape((2,3)) # [[0 1 2][3 4 5]]print x #[0 1 2 3 4]print x.reshape((2,3)).reshape((3,2)) # [[0 1][2 3][4 5]]y = numpy.array([[1,1,1],[1,1,1]])x = x.reshape(y.shape)print x # [[0 1 2][3 4 5]]print x.flatten() # [0 1 2 3 4 5]x.flatten()[0] = -1 # flatten返回的是拷貝print x # [[0 1 2][3 4 5]]print x.ravel() # [0 1 2 3 4 5]x.ravel()[0] = -1 # ravel返回的是視圖(引用) print x # [[-1 1 2][3 4 5]]print "維度大小自動推導"arr = numpy.arange(15)print arr.reshape((5, -1)) # 15 / 5 = 3
十五、ndarray數組的拆分與合并
程式碼範例:
print '數組的合并與拆分'x = numpy.array([[1, 2, 3], [4, 5, 6]])y = numpy.array([[7, 8, 9], [10, 11, 12]])print numpy.concatenate([x, y], axis = 0) # 豎直組合 [[ 1 2 3][ 4 5 6][ 7 8 9][10 11 12]]print numpy.concatenate([x, y], axis = 1) # 水平組合 [[ 1 2 3 7 8 9][ 4 5 6 10 11 12]]print '垂直stack與水平stack'print numpy.vstack((x, y)) # 垂直堆疊:相對於垂直組合print numpy.hstack((x, y)) # 水平堆疊:相對於水平組合# dstack:按深度堆疊print numpy.split(x,2,axis=0) # 按行分割 [array([[1, 2, 3]]), array([[4, 5, 6]])]print numpy.split(x,3,axis=1) # 按列分割 [array([[1],[4]]), array([[2],[5]]), array([[3],[6]])]# 堆疊輔助類import numpy as nparr = np.arange(6)arr1 = arr.reshape((3, 2))arr2 = np.random.randn(3, 2)print 'r_用於按行堆疊'print np.r_[arr1, arr2]'''[[ 0. 1. ] [ 2. 3. ] [ 4. 5. ] [ 0.22621904 0.39719794] [-1.2201912 -0.23623549] [-0.83229114 -0.72678578]]'''print 'c_用於按列堆疊'print np.c_[np.r_[arr1, arr2], arr]'''[[ 0. 1. 0. ] [ 2. 3. 1. ] [ 4. 5. 2. ] [ 0.22621904 0.39719794 3. ] [-1.2201912 -0.23623549 4. ] [-0.83229114 -0.72678578 5. ]]'''print '切片直接轉為數組'print np.c_[1:6, -10:-5]'''[[ 1 -10] [ 2 -9] [ 3 -8] [ 4 -7] [ 5 -6]]'''
十六、數組的元素重複操作
程式碼範例:
print '數組的元素重複操作'x = numpy.array([[1,2],[3,4]])print x.repeat(2) # 按元素重複 [1 1 2 2 3 3 4 4]print x.repeat(2,axis=0) # 按行重複 [[1 2][1 2][3 4][3 4]]print x.repeat(2,axis=1) # 按列重複 [[1 1 2 2][3 3 4 4]]x = numpy.array([1,2])print numpy.tile(x,2) # tile瓦片:[1 2 1 2]print numpy.tile(x, (2, 2)) # 指定從低維到高維依次複製的次數。 # [[1 2 1 2][1 2 1 2]]
全部代碼:Github