Defined
Returns a single value
def my_abs (x):
if x >= 0: Return
x
else:
return-x
Returns multiple values
Return multi-valued is to return a tuple
Import Math
def move (x, y, step, angle=0):
NX = x + step * math.cos (angle)
NY = y-step * Math.sin (angle)
return NX, NY
Empty function
Specify default parameters
The required arguments are in the front, and the default arguments are after. The default argument needs to point to an immutable object (the default parameter value is evaluated when the function is defined)
def power (x, n=2):
s = 1 while
n > 0:
n = n-1
s = S * x return
S
Variable parameters
Def calc (*numbers):
sum = 0 for
n in numbers:
sum = SUM + N * n * return
sum
To invoke a function method of a variable parameter
>>> Calc (1, 2)
5
>>> calc ()
0
>>> nums = [1, 2, 3]
>>> Calc ( *nums)
14
Keyword parameters
def person (name, age, **kw):
print ' name: ', Name, ' Age: ', age, ' other: ', kw
Methods to invoke keyword parameters
>>> person (' Michael, "
Name:michael age:30 Other: {} >>> person
(' Bob ', city= ' Beijing ')
Name:bob age:35 Other: {"City": ' Beijing '}
>>> person (' Adam ', ' gender= ' M ', job= ' Engineer ')
Name:adam age:45: {' Gender ': ' M ', ' job ': ' Engineer '}
>>> kw = ' City ': ' Beijing ', ' job ': ' Engineer '}< C7/>>>> (' Jack ', **kw)
Name:jack age:24 Other: {' City ': ' Beijing ', ' job ': ' Engineer '}
Note:
The order of the parameter definitions must be: required, default, variable, and key parameters.
For any function, it can be invoked in the form of a similar func (*args, **kw), regardless of how its arguments are defined.
Recursion
If a function calls itself internally, this function is a recursive function.
Tail recursion
The call itself is called when the function returns, and the return statement cannot contain an expression.
Higher order functions
- Variables can point to functions (functions can be assigned to a variable)
- Function names are also variables (functions can be assigned other values)
- Functions can be used as arguments to functions (higher-order functions)
Map (func, list)
The map () function receives two parameters, one is a function, the other is a sequence, and map functions the passed-in function to each element of the sequence and returns the result as a new list.
>>> def f (x):
... return x * x ...
>>> map (f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
[1, 4, 9, 16, 25, 36, 49, 64, 81]
Reduce (func_with_two_params, list)
Reduce functions a function in a sequence [X1, x2, x3 ...] , this function must receive two parameters, reduce the cumulative calculation of the result and the next element of the sequence.
Reduce (f, [X1, x2, X3, x4])
#相当于: F (f (
x1, x2), x3), x4)
>>> def add (x, y):
... return x + y
...
>>> reduce (add, [1, 3, 5, 7, 9])
25
Filter (Func_return_bool, list)
The passed function is applied to each element in turn, and the element is persisted or discarded based on whether the return value is true or false.
def is_odd (n): Return
n% 2 = 1
filter (is_odd, [1, 2, 4, 5, 6, 9, ten])
# results: [1, 5, 9, 15]
Sorted
For two elements x and Y, if you think X < Y, then return 1, and if you think x = = y, return 0 and 1 if you think x > Y.
>>> sorted ([5, 9,,])
[5, 9, 12, 21, 36]
Higher order function usage
def reversed_cmp (x, y):
if x > y:
return-1
if x < y: return
1 return
0
>>> S Orted ([5, 9, O], reversed_cmp)
[36, 21, 12, 9, 5]
function as the return value
def lazy_sum (*args):
def sum ():
ax = 0 for
n in args:
ax = ax + n return AX-return
sum
>> ;> f = lazy_sum (1, 3, 5, 7, 9)
>>> f
<function sum at 0x10452f668>
>>> F ()
25
Note: Each call to Lazy_sum () returns a new function, even if the same argument is passed in.
Closed Bag
def count ():
fs = []
for I in range (1, 4):
def f (): Return
i*i
fs.append (f) return
FS
F1, F2, F3 = count ()
>>> F1 ()
9
>>> F2 ()
9
>>> f3 ()
9
The reason is that the loop has executed while calling Count, but F () has not been executed until it is invoked. So the return function does not refer to any of the loop variables, or to subsequent variables that change.
anonymous function (lambda expression)
Equivalent to:
The keyword lambda represents an anonymous function, and the x in front of the colon represents the function argument.
anonymous function as return value
def build (x, y): Return
lambda:x * x + y * y
Adorners (@func)
The way to dynamically add functionality during code runs, called "adorners" (decorator), in essence, decorator is a higher-order function of the return function.
def log (func):
def wrapper (*args, **kw):
print ' call%s (): '% func.__name__ return
func (*args, **kw)
Return wrapper
@log def today ()
:
print ' 2013-12-25 '
>>> Now ()
:
2013-12-25
#相当于执行: Now
= log
back to top
with parameter adorner
def log (text):
def Decorator (func):
def wrapper (*args, **kw):
print '%s%s (): '% (text, func.__name__) return
func (*args, **kw)
Wrapper return
decorator
@log (' Execute ')
def now ():
print ' 2013-12-25 '
#执行结果
> >> now ()
Execute today ():
2013-12-25
#相当于执行:
>>> now = log ("Execute") (now)
Anatomy: First execute log (' Execute '), return the Decorator function, then call the returned function, the parameter is now function, the return value is the wrapper function finally.
Because the __name__ of the function has changed, the code that relies on this will make an error. So use Functools.wraps.
Import Functools
def log (func):
@functools. Wraps (func)
def wrapper (*args, **kw):
print ' call%s (): '% func.__name__ return
func (*args, **kw) return
wrapper
#对于带参函数
import functools
def log (text):
def decorator (func):
@functools. Wraps (func)
def wrapper (*args, **kw):
print '%s%s (): '% (text, func.__name__) return
func (*args, **kw) return
wrapper return
decorator
Partial function (fixed function default)
>>> import functools
>>> int2 = functools.partial (int, base=2)
>>> int2 (' 1000000 ')
>>> int2 (' 1010101 ')
#相当于:
def int2 (x, base=2): return
int (x , base)
max2 = functools.partial (max, 10)
is equivalent to specifying the first argument for the Max function
MAX2 (5, 6, 7)
#相当于:
Max (10, 5, 6, 7)