Packagetest.ffm83.commons.math;importorg.apache.commons.math3.linear.array2drowrealmatrix; Import org.apache.commons.math3.linear.LUDecomposition; Importorg.apache.commons.math3.linear.RealMatrix; Importorg.apache.commons.math3.stat.descriptive.moment.GeometricMean; Importorg.apache.commons.math3.stat.descriptive.moment.Kurtosis; Importorg.apache.commons.math3.stat.descriptive.moment.Mean; importorg.apache.commons.math3.stat.descriptive.moment.Skewness; Importorg.apache.commons.math3.stat.descriptive.moment.StandardDeviation; Importorg.apache.commons.math3.stat.descriptive.moment.Variance; Import Org.apache.commons.math3.stat.descriptive.rank.Max; Importorg.apache.commons.math3.stat.descriptive.rank.Min; Importorg.apache.commons.math3.stat.descriptive.rank.Percentile; Importorg.apache.commons.math3.stat.descriptive.summary.Product; Importorg.apache.commons.math3.stat.descriptive.summary.Sum; Importorg.apache.commons.math3.stat.descriptive.summary.SumOfSquares;/** * Easy to use Commons Math method * @author Fan Fangming*/ Public classMathusage { Public Static voidMain (string[] args) {Double[] values =New Double[] {0.33,1.33,0.27333,0.3,0.501, 0.444,0.44,0.34496,0.33,0.3,0.292,0.667 }; Min min=NewMin (); Max Max=NewMax (); Mean Mean=NewMean ();//arithmetic mean valueProduct Product =NewProduct ();//ProductSum sum =NewSum (); Variance Variance=NewVariance ();//VarianceSystem. out. println ("min:"+min.evaluate (values)); System. out. println ("Max:"+max.evaluate (values)); System. out. println ("mean:"+mean.evaluate (values)); System. out. println ("Product:"+product.evaluate (values)); System. out. println ("sum:"+sum.evaluate (values)); System. out. println ("Variance:"+variance.evaluate (values)); Percentile percentile= Newpercentile ();//percentile number of percentilesGeometricmean Geomean = Newgeometricmean ();//geometric averages, n-times arithmetic roots of a continuous product of n positive numbers are called the geometric averages of the n numbers .Skewness skewness =NewSkewness ();//skewness ();Kurtosis Kurtosis =NewKurtosis ();//Kurtosis, peak degreeSumofsquares sumofsquares = Newsumofsquares ();//Sum of squaresStandarddeviation standarddeviation =NewStandarddeviation ();//Standard deviationSystem. out. println ("Percentilevalue:"+ Percentile.evaluate (values,80.0)); System. out. println ("Geometricmean:"+geomean.evaluate (values)); System. out. println ("skewness:"+skewness.evaluate (values)); System. out. println ("kurtosis:"+kurtosis.evaluate (values)); System. out. println ("Sumofsquares:"+sumofsquares.evaluate (values)); System. out. println ("standarddeviation:"+standarddeviation.evaluate (values)); System. out. println ("-------------------------------------"); //Create a real matrix with Rowsand three columns Double[] Matrixdata ={{1d,2d,3d},{2d,5d,3d}}; Realmatrix m=Newarray2drowrealmatrix (Matrixdata); System. out. println (m); //One more with three rows, Twocolumns Double[] MatrixData2 ={ {1d,2d},{2d,5d}, {1d, 7d}}; Realmatrix N=Newarray2drowrealmatrix (MATRIXDATA2); //Note:the constructor copies the input double[][] array. //Now multiply m by nRealmatrix p =m.multiply (n); System. out. println ("P:"+p); System. out. println (P.getrowdimension ());//2System. out. println (P.getcolumndimension ());//2//Invert p, using LudecompositionRealmatrix Pinverse =newludecomposition (P). Getsolver (). Getinverse (); System. out. println (Pinverse); The result of the operation is as follows: min:0.27333Max:1.33mean:0.46269083333333333Product:2.3429343978460972E-5sum:5.552289999999999Variance:0.08757300031742428 thePercentile value:0.5674000000000001geometric mean:0.4112886050879374skewness:2.670095445623868kurtosis:7.718241303328169Sumofsquares:3.5322966905000004standarddeviation:0.2959273564870681-------------------------------------array2drowrealmatrix{{1.0,2.0,3.0},{2.0,5.0,3.0}}p:array2drowrealmatrix{{8.0,33.0},{15.0,50.0}}22array2drowrealmatrix{{-0.5263157895,0.3473684211},{0.1578947368,-0.0842105263}}
Apache Commons Math Library simple and practical