First, the public key and private file are generated by genkey.go, and the generated public and private keys are used for encryption and decryption in rsa.go.
/ / File genkey.go / / generate public and private key pem file
Package main
Import (
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"encoding/pem"
"flag"
"log"
"os"
)
Func main() {
Var bits int
flag.IntVar(&bits, "b", 1024, "Key length, default is 1024")
If err := GenRsaKey(bits); err != nil {
log.Fatal("Frequent key file generation failed")
}
log.Println("secure key file generated successfully")
}
/ / Generate private key and public key file
Func GenRsaKey(bits int) error {
/ / Generate private key file
privateKey, err := rsa.GenerateKey(rand.Reader, bits)
If err != nil {
Return err
}
derStream := x509.MarshalPKCS1PrivateKey(privateKey)
Block := &pem.Block{
Type: "RSA PRIVATE KEY",
Bytes: derStream,
}
File, err := os.Create("private.pem")
If err != nil {
Return err
}
Err = pem.Encode(file, block)
If err != nil {
Return err
}
/ / Generate a public key file
publicKey := &privateKey.PublicKey
defPkix, err := x509.MarshalPKIXPublicKey(publicKey)
If err != nil {
Return err
}
Block = &pem.Block{
Type: "RSA PUBLIC KEY",
Bytes: defPkix,
}
File, err = os.Create("public.pem")
If err != nil {
Return err
}
Err = pem.Encode(file, block)
If err != nil {
Return err
}
Return nil
}
//rsa.go
// public key encryption private key decryption private key signature public key verification
Package main
Import (
"crypto"
"crypto/rand"
"crypto/rsa"
"crypto/sha256"
"crypto/x509"
"encoding/pem"
"errors"
"fmt"
"io/ioutil"
"os"
)
Var privateKey, publicKey []byte
Func init() {
Var err error
publicKey, err = ioutil.ReadFile("public.pem")
If err != nil {
os.Exit(-1)
}
privateKey, err = ioutil.ReadFile("private.pem")
If err != nil {
os.Exit(-1)
}
//fmt.Printf("%s\n", publicKey)
//fmt.Printf("%s\n", privateKey)
}
Func main() {
Var theMsg = "the message you want to encode hello world"
fmt.Println("Source:", theMsg)
// private key signature
Sig, _ := RsaSign([]byte(theMsg))
fmt.Println(string(sig))
// public key verification
fmt.Println(RsaSignVer([]byte(theMsg), sig))
//public key encryption
// enc, _ := RsaEncrypt([]byte(theMsg))
// fmt.Println("Encrypted:", string(enc))
// // Secret key decryption
// decstr, _ := RsaDecrypt(enc)
// fmt.Println("Decrypted:", string(decstr))
}
// private key signature
Func RsaSign(data []byte) ([]byte, error) {
h := sha256.New()
h.Write(data)
Hashed := h.Sum(nil)
/ / Get the private key
Block, _ := pem.Decode(privateKey)
If block == nil {
Return nil, errors.New("private key error")
}
/ / Parse the private key in PKCS1 format
Priv, err := x509.ParsePKCS1PrivateKey(block.Bytes)
If err != nil {
Return nil, err
}
Return rsa.SignPKCS1v15(rand.Reader, priv, crypto.SHA256, hashed)
}
// public key verification
Func RsaSignVer(data []byte, signature []byte) error {
Hashed := sha256.Sum256(data)
Block, _ := pem.Decode(publicKey)
If block == nil {
Return errors.New("public key error")
}
// parse the public key
pubInterface, err := x509.ParsePKIXPublicKey(block.Bytes)
If err != nil {
Return err
}
// type assertion
Pub := pubInterface.(*rsa.PublicKey)
/ / Verify the signature
Return rsa.VerifyPKCS1v15(pub, crypto.SHA256, hashed[:], signature)
}
// public key encryption
Func RsaEncrypt(data []byte) ([]byte, error) {
/ / Decrypt the public key in pem format
Block, _ := pem.Decode(publicKey)
If block == nil {
Return nil, errors.New("public key error")
}
// parse the public key
pubInterface, err := x509.ParsePKIXPublicKey(block.Bytes)
If err != nil {
Return nil, err
}
// type assertion
Pub := pubInterface.(*rsa.PublicKey)
//encryption
Return rsa.EncryptPKCS1v15(rand.Reader, pub, data)
}
// private key decryption
Func RsaDecrypt(ciphertext []byte) ([]byte, error) {
/ / Get the private key
Block, _ := pem.Decode(privateKey)
If block == nil {
Return nil, errors.New("private key error!")
}
/ / Parse the private key in PKCS1 format
Priv, err := x509.ParsePKCS1PrivateKey(block.Bytes)
If err != nil {
Return nil, err
}
// decrypt
Return rsa.DecryptPKCS1v15(rand.Reader, priv, ciphertext)
}