R language learning resources, r Language Learning

Source: Internet
Author: User

R language learning resources, r Language Learning

Getting started video tutorial

R language beginner course (1)-R language Quick Start http://cos.name/videos/intro-2-r/

Code

# Object 1 + 1 * 3c (1, 2, 3, 4, 5) c ('helloworld', 'I am a R user') c ("hehe", "haha") 1: 66: 1exp () log () a <-c (, 5) a [1] a [] a [-4] a> 3a [a> 3] # array, whose types must be consistent with those of x <-1: 12a <-array (x, c (3, 4) a [2, 2] a [2,] a [, 2] # Data box (similar to a database table) city <-c ('A', 'bb ', 'cc', 'dd', 'ee ') age <-c (12, 34, 45, 67, 78) sex <-c ('F', 'M', 'F ', 'M', 'F') people <-data. frame (city, age, sex) peoplepeople [2, 3] people [, 2] people $ agepeople $ age> 30 people [people $ age> 30,] # list, the length can be inconsistent. mylist <-list (age, city, sex) mylist # class (a) class (people) class (mylist) attributes (people) str (people) # understanding object details


Running result

> # Object> 1 + 1*3 [1] 4> c (1, 2, 3, 4, 5) [1] 1 2 3 4 5> c ('helloworld ', 'I am a R user') [1] "helloworld" "I am a R user"> c ("hehe", "haha ") [1] "hehe" "haha"> [1] 1 2 3 4 5 6> 6[ 1] 6 5 4 3 2 1> exp) [1] 2.718282 7.389056 20.085537 54.598150> log () [1] 0.0000000 0.6931472 1.0986123> a <-c (, 5)> a [1] [1] 1> a [1: 3] [1] 1 2 3> a [-4] [1] 1 2 3 5> a> 3 [1] false true> a [a> 3] [1] 4 5 >>> # array, type must be consistent> x <-> a <-array (x, c ()> a [] [1] 5> a [2,] [1] 2 5 8 11> a [, 2] [1] 4 5 6 >>># data boxes (similar to database tables)> city <-c ('A ', 'bb ', 'cc', 'dd', 'ee')> age <-c (, 78)> sex <-c ('F ', 'M', 'F', 'M', 'F')> people <-data. frame (city, age, sex)> people city age sex1 aa 12 F2 bb 34 M3 cc 45 F4 dd 67 M5 ee 78 F> people [2, 3] [1] MLevels: f m> people [, 2] [1] 12 34 45 67 78> people $ age [1] 12 34 45 67 78> people $ age> 30 [1] false true> people [people $ age> 30,] city age sex2 bb 34 M3 cc 45 F4 dd 67 M5 ee 78 F >># list, the length can be different> mylist <-list (age, city, sex)> mylist [[1] [1] 12 34 45 67 78 [[2] [1] "aa" "bb" "cc" "dd" "ee" [3] [1] "F" "M" "F" "M" "F" >>#> class () [1] "matrix"> class (people) [1] "data. frame "> class (mylist) [1]" list "> attributes (people) $ names [1]" city "" age "" sex "$ row. names [1] 1 2 3 4 5 $ class [1] "data. frame "> str (people) # understand the object details 'data. frame ': 5 obs. of 3 variables: $ city: Factor w/5 levels "aa", "bb", "cc ",..: 1 2 3 4 5 $ age: num 12 34 45 67 78 $ sex: Factor w/2 levels "F", "M": 1 2 1 2 1

R language Elementary Course (2)-visual function http://cos.name/videos/r101-data-visualization-with-r/ in R Language

Code

# Drawing package graphics (basic), lattice (advanced), ggplot2 (strong function) # Basic Drawing Function x <-c (, 5) y <-c, 2, 4, 5) # y on the left and xplot (y ~ X) # default discrete point plot (y ~ X, type = 'l') # lineplot (y ~ X, type = 'H') # histhist (y) # histogram # Use the lattice package library (lattice) num <-sample (, size = 50, replace = 1) barchart (table (num) stripplotdensityplotxyplothistgram # three-dimensional graph library (lattice) wireframe # ggplot2 package library (ggplot2) p <-ggplot (...) print (p) p <-p + stat_smooth () + geom_point () + scale_color_manual () + facet_wrap () + opts () + labs ()



R language Elementary Course (3)-R read data http://cos.name/videos/r101-data-access/

Code

# Console input x <-readline () # input a row x <-scan () # input multiple lines # output local file <-file ('e:/out.txt ') cat (, sep = '\ t', file = output) close (output) # local file input output <-file ('e:/out.txt ') input <-scan (file = output) close (output) # input output of the string <-file ('e:/out2.txt ') writeLines (. character (), con = output) input <', sep =', ') data <-read.table(file='iris.csv', sep = ',') data <-read. table (file = file. choose (), sep = ',') data <-read. table ('clipboard') # connect to the database library (RODBC) channel <-odbcConnect ('mysql', uid = user, pwd = password) sqlTables (channel) data <-sqlFetch (channel, "MERs") sqlQuery (channel, 'select * from orders ') # Read excel document excelcha <-odbcConnectExcel ('C:/iris.xls ', readonly = false) sqlTables (excelcha) data <-sqlFetch (excelcha, 'sheet1') data $ new <-with (data. sqpal_length/sepal_width) sqlsave (excel, data, tablename = 'sheet3') # web data capture library (xml) url <-'www tables <-readHTMLTable (url, stringAsFactors = false, header = F) data <-tables [[2]


R language Elementary Course (4)-data aggregation plyr package http://cos.name/videos/r101-plyr/

data(tips,package='reshape2')library(plyr)head(tips)aggregate(x=tips$tip,          by=list(tip$sex),          fun=mean)ddply(data=tips,      variables='sex',      fun=function(x){mean(x$tip)})ratio_fun <-function(x){  sum(x$tip/sum(x$total_bill))}ddply(tips,.(sex),ratio_fun)x<-1:10each(min,max)(x)colwise(mean,is.numeric)(iris)


R language Elementary Course (5)-regression analysis http://cos.name/videos/r101-regression/


Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.