The ae:ae of TF realizes the real value comparison of the TF self-brought data set compared with AE first encoder the accurate comparison of decoder predictive numbers-jason NIU

Source: Internet
Author: User

Import TensorFlow as Tfimport NumPy as Npimport matplotlib.pyplot as Plt#import MNIST datafrom Tensorflow.examples.tutoria Ls.mnist Import input_datamnist=input_data.read_data_sets ("/niu/mnist_data/", One_hot=false) # Parameterlearning_  Rate = 0.01training_epochs = Batch_size = 256display_step = 1examples_to_show = 10# Network parametersn_input = 784 #tf Graph input (only pictures) X=tf.placeholder ("float", [none,n_input]) # hidden Layer settingsn_hidden_1 = N_hidden_2 = 1 28
weights = {' encoder_h1 ': TF. Variable (Tf.random_normal ([n_input,n_hidden_1])), ' Encoder_h2 ': TF. Variable (Tf.random_normal ([n_hidden_1,n_hidden_2])), ' decoder_h1 ': TF. Variable (Tf.random_normal ([n_hidden_2,n_hidden_1])), ' Decoder_h2 ': TF. Variable (Tf.random_normal ([N_hidden_1, N_input])),}biases = {' encoder_b1 ': TF. Variable (Tf.random_normal ([n_hidden_1])), ' encoder_b2 ': TF. Variable (Tf.random_normal ([n_hidden_2])), ' decoder_b1 ': TF. Variable (Tf.random_normal ([n_hidden_1])), ' decoder_b2 ': TF. Variable (Tf.random_normal ([N_input])),} #定义encoderdef Encoder (x): # encoder Hidden layer with sigmoid activation #1 layer_1 = Tf.nn.sigmoid (Tf.add (Tf.matmul (x, weights[' encoder_h1 ']), biases[' Encoder_ B1 ']) # Decoder Hidden layer with sigmoid activation #2 layer_2 = tf.nn.sigmoid (Tf.add (Tf.matmul (layer_1, weights[') Encoder_h2 ']), biases[' encoder_b2 ')) return layer_2 #定义decoderdef decoder (x): # Encoder Hidden layer with sigmoid activation #1 layer_1 = tf.nn.sigmoid (Tf.add (Tf.matmul (x, weights[' Decoder_ H1 ']), biases[' decoder_b1 ')) # decoder Hidden layer with sigmoid activation #2 LA yer_2 = Tf.nn.sigmoid (Tf.add (Tf.matmul (layer_1, weights[' decoder_h2 ']), biases[' Decoder_ B2 '])) return layer_2# Construct modelencoder_op = encoder (X) # featuresdecoder_op = Decoder (encoder_op ) # 784 features# predictiony_pred = decoder_op # Targets (Labels) is the input data.y_true = X # Defin e loss and optimizer, minimize the squared errorcost = Tf.reduce_mean (Tf.pow (y_true-y_pred, 2)) optimizer = Tf.train.Adam Optimizer (learning_rate). Minimize (Cost) # Launch the Graphwith TF. Session () as Sess:
Sess.run (Tf.initialize_all_variables ()) total_batch = Int (mnist.train.num_examples/batch_size) # Training Cycle For epoch in range (Training_epochs): # Loop through all batches for I in Range (Total_batch): BATC H_xs, Batch_ys = Mnist.train.next_batch (batch_size) # max (x) = 1, min (x) = 0 # Run optimization op (backprop) and cost op (to get loss value) _, c = Sess.run ([Optimizer, Cost], feed_dict={x:batch_xs}) # Display lo GS per epoch step if epoch% Display_step = = 0:print ("Epoch:", '%04d '% (epoch+1), "Co St= "," {:. 9f} ". Format (c)) print (" Optimization finished! ") # # Applying encode and decode over test set encode_decode = Sess.run (y_pred, feed_dict={x:mnist.test.images[: Examples_to_show]}) # Compare original images with their reconstructions f, a = Plt.subplots (2, Figsize= (10, 2)) Plt.title (' Matplotlib,ae--jason Niu ') for I in Range (examples_to_show): A[0][i].imshow (Np.reshape (Mnist.test.images[i], ()) A[1][i].imshow (Np.reshape (Encode_decode[i), (28, 28) )) Plt.show ()

The ae:ae of TF realizes the real value comparison of the TF self-brought data set compared with AE first encoder the accurate comparison of decoder predictive numbers-jason NIU

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.