The ae:ae of TF realizes the non supervised learning classification before the encoder of the TF comes with the data set AE decoder

Source: Internet
Author: User

Import TensorFlow as Tfimport NumPy as Npimport matplotlib.pyplot as Plt#import MNIST datafrom Tensorflow.examples.tutoria Ls.mnist Import input_datamnist=input_data.read_data_sets ("/niu/mnist_data/", One_hot=false) # Parameterlearning_   Rate = 0.001 Training_epochs = batch_size = 256display_step = 1examples_to_show = 10# Network parametersn_input = 784 # MNIST Data input (img shape:28*28 pixel is 784 eigenvalues) #tf Graph input (only pictures) X=tf.placeholder ("float", [None,n_input]) # Hidden layer settingsn_hidden_1 = n_hidden_2 = N_hidden_3 = 10n_hidden_4 = 2 weights = {' encoder_h1 ': TF. Variable (Tf.random_normal ([n_input,n_hidden_1])), ' Encoder_h2 ': TF. Variable (Tf.random_normal ([n_hidden_1,n_hidden_2])), ' Encoder_h3 ': TF. Variable (Tf.random_normal ([n_hidden_2,n_hidden_3])), ' Encoder_h4 ': TF. Variable (Tf.random_normal ([N_hidden_3,n_hidden_4])), ' decoder_h1 ': TF. Variable (Tf.random_normal ([n_hidden_4,n_hidden_3])), ' Decoder_h2 ': TF. Variable (Tf.random_normal ([N_hiddeN_3,n_hidden_2])), ' Decoder_h3 ': TF. Variable (Tf.random_normal ([n_hidden_2,n_hidden_1])), ' Decoder_h4 ': TF. Variable (Tf.random_normal ([N_hidden_1, N_input])),}biases = {' encoder_b1 ': TF. Variable (Tf.random_normal ([n_hidden_1])), ' encoder_b2 ': TF. Variable (Tf.random_normal ([n_hidden_2])), ' encoder_b3 ': TF. Variable (Tf.random_normal ([n_hidden_3])), ' encoder_b4 ': TF. Variable (Tf.random_normal ([N_hidden_4])), ' decoder_b1 ': TF. Variable (Tf.random_normal ([n_hidden_3])), ' decoder_b2 ': TF. Variable (Tf.random_normal ([n_hidden_2])), ' decoder_b3 ': TF. Variable (Tf.random_normal ([n_hidden_1])), ' decoder_b4 ': TF. Variable (Tf.random_normal ([N_input])),}def Encoder (x): # encoder Hidden layer with sigmoid activation #1 layer_    1 = tf.nn.sigmoid (Tf.add (Tf.matmul (x, weights[' encoder_h1 '), biases[' ENCODER_B1 '])) layer_2 = Tf.nn.sigmoid (Tf.add (Tf.matmul (layer_1, weights[' encoder_h2 ']), biases['Encoder_b2 ']) layer_3 = Tf.nn.sigmoid (Tf.add (Tf.matmul, layer_2 ' weights['),                                    biases[' encoder_b3 ')) Layer_4 = Tf.add (Tf.matmul (layer_3, weights[' Encoder_h4 ']),  biases[' Encoder_b4 ') return layer_4 #定义decoderdef Decoder (x): # decoder Hidden layer with sigmoid activation #2 layer_1 = tf.nn.sigmoid (Tf.add (Tf.matmul (x, weights[' decoder_h1 ']), biases[' Decod Er_b1 ']) layer_2 = Tf.nn.sigmoid (Tf.add (Tf.matmul, layer_1 ' weights['), b                                iases[' decoder_b2 ')) layer_3 = Tf.nn.sigmoid (Tf.add (Tf.matmul, layer_2 ' weights['),                                biases[' decoder_b3 ')) Layer_4 = Tf.nn.sigmoid (Tf.add (Tf.matmul, layer_3 ' weights['), biases[' DECODER_B4 ')) return layer_4# Construct modelencoder_op = encoder (X) # Featur ESDECODER_OP = Decoder (ENCODER_OP) # 784 features# predictiony_pred = decoder_op #After # Targets (Labels) is the input data.y_true = X #Beforecost = Tf.reduce_mean (Tf.pow (y_true-y_pred, 2)) optimizer = Tf.train.AdamOptimizer (learning_rate). Minimize (cost) # Launch the Graphwith TF. Session () as Sess:sess.run (Tf.global_variables_initializer ()) total_batch = Int (mnist.train.num_examples/batch_size ) # Training cycle for epoch in range (Training_epochs): # Loop through all batches for I in range (total_b Atch): batch_xs, Batch_ys = Mnist.train.next_batch (batch_size) # max (x) = 1, min (x) = 0 # Run Optim ization op (backprop) and cost op (to get loss value) _, c = Sess.run ([Optimizer, cost], Feed_dict={x:batch_xs }) # Display logs per epoch step if epoch% Display_step = = 0:print ("Epoch:", '%04d '% (epoch+1)    , "cost=", "{:. 9f}". Format (c)) print ("Optimization finished!") Encode_result = Sess.run (encOder_op,feed_dict={x:mnist.test.images}) Plt.scatter (Encode_result[:,0],encode_result[:,1],c=mnist.test.labels) Plt.title (' Matplotlib,ae,classification--jason Niu ') plt.show ()

  

The ae:ae of TF realizes the non supervised learning classification before the encoder of the TF comes with the data set AE decoder

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.