大資料技術之輔助排序和二次排序案例(GroupingComparator)

來源:互聯網
上載者:User

標籤:ext   配置資訊   value   處理   apache   amp   oop   路徑   oid   

大資料技術之輔助排序和二次排序案例(GroupingComparator)

1)需求

有如下訂單資料

訂單id

商品id

成交金額

0000001

Pdt_01

222.8

0000001

Pdt_05

25.8

0000002

Pdt_03

522.8

0000002

Pdt_04

122.4

0000002

Pdt_05

722.4

0000003

Pdt_01

222.8

0000003

Pdt_02

33.8

現在需要求出每一個訂單中最貴的商品。

2)輸入資料 GroupingComparator.txt

   Pdt_01    222.8   Pdt_05    722.4   Pdt_05    25.8   Pdt_01    222.8   Pdt_01    33.8   Pdt_03    522.8   Pdt_04    122.4

輸出資料預期:

3    222.8
part-r-00000.txt
2    722.4
part-r-00001.txt
1    222.8
part-r-00002.txt

3)分析

(1)利用“訂單id和成交金額”作為key,可以將map階段讀取到的所有訂單資料按照id分區,按照金額排序,發送到reduce。

(2)在reduce端利用groupingcomparator將訂單id相同的kv彙總成組,然後取第一個即是最大值。

 

4)實現

定義訂單資訊OrderBean

package com.xyg.mapreduce.order;import java.io.DataInput;import java.io.DataOutput;import java.io.IOException;import org.apache.hadoop.io.WritableComparable;public class OrderBean implements WritableComparable<OrderBean> {    private int order_id; // 訂單id號    private double price; // 價格    public OrderBean() {        super();    }    public OrderBean(int order_id, double price) {        super();        this.order_id = order_id;        this.price = price;    }    @Override    public void write(DataOutput out) throws IOException {        out.writeInt(order_id);        out.writeDouble(price);    }    @Override    public void readFields(DataInput in) throws IOException {        order_id = in.readInt();        price = in.readDouble();    }    @Override    public String toString() {        return order_id + "\t" + price;    }    public int getOrder_id() {        return order_id;    }    public void setOrder_id(int order_id) {        this.order_id = order_id;    }    public double getPrice() {        return price;    }    public void setPrice(double price) {        this.price = price;    }    // 二次排序    @Override    public int compareTo(OrderBean o) {        int result = order_id > o.getOrder_id() ? 1 : -1;        if (order_id > o.getOrder_id()) {            result = 1;        } else if (order_id < o.getOrder_id()) {            result = -1;        } else {            // 價格倒序排序            result = price > o.getPrice() ? -1 : 1;        }        return result;    }}

編寫OrderSortMapper處理流程

package com.xyg.mapreduce.order;
import java.io.IOException;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.NullWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Mapper;public class OrderMapper extends Mapper<LongWritable, Text, OrderBean, NullWritable> { OrderBean k = new OrderBean(); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 1 擷取一行 String line = value.toString(); // 2 截取 String[] fields = line.split("\t"); // 3 封裝對象 k.setOrder_id(Integer.parseInt(fields[0])); k.setPrice(Double.parseDouble(fields[2])); // 4 寫出 context.write(k, NullWritable.get()); }}

編寫OrderSortReducer處理流程

package com.xyg.mapreduce.order;
import java.io.IOException;import org.apache.hadoop.io.NullWritable;import org.apache.hadoop.mapreduce.Reducer;public class OrderReducer extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable> { @Override protected void reduce(OrderBean key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException { context.write(key, NullWritable.get()); }}

編寫OrderSortDriver處理流程

package com.xyg.mapreduce.order;import java.io.IOException;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.NullWritable;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class OrderDriver {    public static void main(String[] args) throws Exception, IOException {        // 1 擷取配置資訊        Configuration conf = new Configuration();        Job job = Job.getInstance(conf);        // 2 設定jar包載入路徑        job.setJarByClass(OrderDriver.class);        // 3 載入map/reduce類        job.setMapperClass(OrderMapper.class);        job.setReducerClass(OrderReducer.class);        // 4 設定map輸出資料key和value類型        job.setMapOutputKeyClass(OrderBean.class);        job.setMapOutputValueClass(NullWritable.class);        // 5 設定最終輸出資料的key和value類型        job.setOutputKeyClass(OrderBean.class);        job.setOutputValueClass(NullWritable.class);        // 6 設定輸入資料和輸出資料路徑        FileInputFormat.setInputPaths(job, new Path(args[0]));        FileOutputFormat.setOutputPath(job, new Path(args[1]));        // 10 設定reduce端的分組        job.setGroupingComparatorClass(OrderGroupingComparator.class);        // 7 設定分區        job.setPartitionerClass(OrderPartitioner.class);        // 8 設定reduce個數        job.setNumReduceTasks(3);        // 9 提交        boolean result = job.waitForCompletion(true);        System.exit(result ? 0 : 1);    }}OrderSortDriver

編寫OrderSortPartitioner處理流程

package com.xyg.mapreduce.order;
import org.apache.hadoop.io.NullWritable;import org.apache.hadoop.mapreduce.Partitioner;public class OrderPartitioner extends Partitioner<OrderBean, NullWritable> { @Override public int getPartition(OrderBean key, NullWritable value, int numReduceTasks) { return (key.getOrder_id() & Integer.MAX_VALUE) % numReduceTasks; }}

編寫OrderSortGroupingComparator處理流程

package com.xyg.mapreduce.order;
import org.apache.hadoop.io.WritableComparable;import org.apache.hadoop.io.WritableComparator;public class OrderGroupingComparator extends WritableComparator { protected OrderGroupingComparator() { super(OrderBean.class, true); } @SuppressWarnings("rawtypes") @Override public int compare(WritableComparable a, WritableComparable b) { OrderBean aBean = (OrderBean) a; OrderBean bBean = (OrderBean) b; int result; if (aBean.getOrder_id() > bBean.getOrder_id()) { result = 1; } else if (aBean.getOrder_id() < bBean.getOrder_id()) { result = -1; } else { result = 0; } return result; }}

大資料技術之輔助排序和二次排序案例(GroupingComparator)

相關文章

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.