MapReduce簡單一實例:wordcount--大資料紀錄片第五記

來源:互聯網
上載者:User

標籤:http   result   common   查詢   log   技術   alt   count   inf   

不知道為啥不是很想學習MapReduce方面的知識,不過現在這麼想可能過段時間還是免不了去學,這邊先記錄下一個MapReduce的執行個體wordcount代碼。

1、

pom.xml:

<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>RELEASE</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-core</artifactId>
<version>2.8.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.8.3</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.8.3</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.8.3</version>
</dependency>
</dependencies>


2、
WordCountMapper:
  
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
Text k = new Text();
IntWritable v = new IntWritable(1);

@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//擷取一行文本
String line = value.toString();
//根據分隔字元切分
String[] words = line.split(" ");
//輸出
for (String word : words) {
k.set(word);
context.write(k, v);
}
}
}


3、
WordCountReducer:
  
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
int sum;
IntWritable v = new IntWritable();

@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
//累加求和
sum = 0;
for (IntWritable count : values) {
sum += count.get();
}
//輸出
v.set(sum);
context.write(key, v);
}
}


4、
WordCountDriver:
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class WordCountDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {

//擷取配置資訊及封裝任務
Configuration configuration = new Configuration();
Job job = Job.getInstance(configuration);

//設定jar載入路徑
job.setJarByClass(WordCountDriver.class);

//設定map和reduce類
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);

//設定map輸出
job.setMapOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

//設定reduce輸出
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

//設定輸入和輸出路徑
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

//提交
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);

}
}


5、參數設定:

 

 

6、結果查詢:

 


MapReduce簡單一實例:wordcount--大資料紀錄片第五記

相關文章

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.