標籤:io ar os for sp div on art 問題
先對lcm/gcd進行分解,問題轉變為從因子中選出一些數相乘,剩下的數也相乘,要求和最小。
這裡能夠直接搜尋,注意一個問題,因為同樣因子不能分配給兩邊(會改變gcd)所以能夠將同樣因子合并,這種話,搜尋的層數也變的非常少了。
#include<stdio.h>#include<string.h>#include<iostream>#include<math.h>#include<stdlib.h>#include<time.h>#include<algorithm>using namespace std;typedef long long LL;#define maxn 10000LL factor[maxn];int tot;const int S=10; //測試次數LL muti_mod(LL a,LL b,LL c){ a%=c;b%=c; LL ret=0; while (b){ if (b&1){ ret+=a; if (ret>=c) ret-=c; } a<<=1; if (a>=c) a-=c; b>>=1; } return ret;}LL pow_mod(LL x,LL n,LL mod){ if (n==1) return x%mod; int bit[90],k=0; while (n){ bit[k++]=n&1; n>>=1; } LL ret=1; for (k=k-1;k>=0;k--){ ret=muti_mod(ret,ret,mod); if (bit[k]==1) ret=muti_mod(ret,x,mod); } return ret;}bool check(LL a,LL n,LL x,LL t){ //以a為基,n-1=x*2^t,檢驗n是不是合數 LL ret=pow_mod(a,x,n),last=ret; for (int i=1;i<=t;i++){ ret=muti_mod(ret,ret,n); if (ret==1 && last!=1 && last!=n-1) return 1; last=ret; } if (ret!=1) return 1; return 0;}bool Miller_Rabin(LL n){ //是素數返回0,合數返回1 LL x=n-1,t=0; while ((x&1)==0) x>>=1,t++; bool flag=1; if (t>=1 && (x&1)==1){ for (int k=0;k<S;k++){ LL a=rand()%(n-1)+1; if (check(a,n,x,t)) {flag=1;break;} flag=0; } } if (!flag || n==2) return 0; return 1;}LL gcd(LL a,LL b){ if (a==0) return 1; if (a<0) return gcd(-a,b); while (b){ LL t=a%b; a=b; b=t; } return a;}LL Pollard_rho(LL x,LL c){ LL i=1,x0=rand()%x,y=x0,k=2; while (1){ i++; x0=(muti_mod(x0,x0,x)+c)%x; LL d=gcd(y-x0,x); if (d!=1 && d!=x){ return d; } if (y==x0) return x; if (i==k){ y=x0; k+=k; } }}void findfac(LL n)//質因數分解,存在factor裡{ if (!Miller_Rabin(n)){ factor[tot++] = n; return; } LL p=n; while (p>=n) p=Pollard_rho(p,rand() % (n-1) +1); findfac(p); findfac(n/p);}LL mins,aa,bb;int top;void dfs(LL a,LL b,int p){ if(a+b>=mins) return; if(p==top) { if(a+b<mins) { mins=a+b; aa=a; bb=b; } return; } dfs(a*factor[p],b,p+1); dfs(a,b*factor[p],p+1);}int main(){ LL a,b,c; while(~scanf("%lld%lld",&a,&b)) { if(a==b) {printf("%lld %lld\n",a,b);continue;} mins=~0ull>>1; c=b/a; tot=0; findfac(c); sort(factor,factor+tot); top=0; for(int i=0;i<tot;i++) { if(i==0) factor[top++]=factor[i]; else if(factor[i]==factor[i-1]) factor[top-1]*=factor[i]; else factor[top++]=factor[i]; } dfs(a,a,0); if(aa>bb) swap(aa,bb); printf("%lld %lld\n",aa,bb); } return 0;}
poj 2429 Pollard_rho大數分解