魅族2016Java互連網方向其中一道筆試題--青蛙跳台階問題

來源:互聯網
上載者:User
問題描述:一隻青蛙一次可以跳上1級台階,也可以跳上2級……它也可以跳上n級。求該青蛙跳上一個n級的台階總共有多少種跳法。

題目分析:

1)這裡的f(n) 代表的是n個台階有一次1,2,...n階的 跳法數。

2)n = 1時,只有1種跳法,f(1) = 1

3) n = 2時,會有兩個跳得方式,一次1階或者2階,這迴歸到了問題(1) ,f(2) = f(2-1) + f(2-2) 

4) n = 3時,會有三種跳得方式,1階、2階、3階,

    那麼就是第一次跳出1階後面剩下:f(3-1);第一次跳出2階,剩下f(3-2);第一次3階,那麼剩下f(3-3)

    因此結論是f(3) = f(3-1)+f(3-2)+f(3-3)

5) n = n時,會有n中跳的方式,1階、2階...n階,得出結論:

    f(n) = f(n-1)+f(n-2)+...+f(n-(n-1)) + f(n-n) => f(0) + f(1) + f(2) + f(3) + ... + f(n-1)

    

6) 由以上已經是一種結論,但是為了簡單,我們可以繼續簡化:

    f(n-1) = f(0) + f(1)+f(2)+f(3) + ... + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2)

    f(n) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2) + f(n-1) = f(n-1) + f(n-1)

    可以得出:

    f(n) = 2*f(n-1)

    

7) 得出最終結論,在n階台階,一次有1、2、...n階的跳的方式時,總得跳法為:

              | 1       ,(n=0 ) 

f(n) =     | 1       ,(n=1 )               | 2*f(n-1),(n>=2)

 

public class Solutionn {
public static int jumpFloor(int target) {
if (target <= 0) {
return -1;
} else
if (target == 1) {
return 1;
} else {
return 2 * jumpFloor(target - 1);
}
}

public static void main(String[] args) {
System.out.println(jumpFloor(3));
}
}

簡單總結:

因為n級台階,第一步有n種跳法:跳1級、跳2級、到跳n級
跳1級,剩下n-1級,則剩下跳法是f(n-1)
跳2級,剩下n-2級,則剩下跳法是f(n-2)
所以f(n)=f(n-1)+f(n-2)+...+f(1)
因為f(n-1)=f(n-2)+f(n-3)+...+f(1)
所以f(n)=2*f(n-1)

相關文章

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.