Big Data algorithm design pattern (1)-TopN Spark implementation

Source: Internet
Author: User

Tag: value function set computes BSP int Contex split broadcast

TOPN algorithm, spark implementation

 Packagecom.kangaroo.studio.algorithms.topn;ImportOrg.apache.spark.api.java.JavaPairRDD;ImportOrg.apache.spark.api.java.JavaRDD;ImportOrg.apache.spark.api.java.JavaSparkContext;Importorg.apache.spark.api.java.function.FlatMapFunction;ImportOrg.apache.spark.api.java.function.Function2;Importorg.apache.spark.api.java.function.PairFunction;ImportOrg.apache.spark.broadcast.Broadcast;ImportScala. Tuple2;Importjava.io.Serializable;ImportJava.util.*; Public classTopnsparkImplementsSerializable {PrivateJavasparkcontext JSC; Broadcast<Integer>Topnum; PrivateString InputPath; /** constructor * 1. Initialize Javasparkcontext * 2. Initialize the number of broadcast variables TOPN, can be shared by all partition * 3. Initialize input path **/     PublicTopnspark (Integer Num, String path) {JSC=NewJavasparkcontext (); Topnum=Jsc.broadcast (Num); InputPath=path; }    /** Program Entry function **/     Public voidrun () {/** Read data into InputPath **/Javardd<String> lines = Jsc.textfile (InputPath, 1); /** The RDD specification to 9 partitions **/Javardd<String> Rdd = LINES.COALESCE (9); /** Convert input to KV format * key is the primary key of the protocol, value is the number of sort references * Note: The key here is not unique, that is, the same key may have multiple records, so below our statute key into a unique key * Input: line, Output: KV **/Javapairrdd<string, integer> kv = Rdd.maptopair (NewPairfunction<string, String, integer>() {             PublicTuple2<string, Integer> call (String s)throwsException {string[] tokens= S.split (","); return NewTuple2<string, Integer> (Tokens[0], Integer.parseint (tokens[1]));        }        }); /** Protocol primary key becomes unique key * Input: kv, Output: KV **/Javapairrdd<string, integer> Uniquekeys = Kv.reducebykey (NewFunction2<integer, Integer, integer>() {             PublicInteger call (integer i1, integer i2)throwsException {returnI1 +I2;        }        }); /** Calculate the TopN of each partition * Here the number of TopN is obtained by broadcast variable, each partition is reserved TopN, total number of partitions: Partitionnum * TopN * Input: kv, output : sortmap, Length TOPN **/Javardd<sortedmap<integer, string>> partitions = uniquekeys.mappartitions (NewFlatmapfunction<iterator<tuple2<string,integer>&gt, Sortedmap<integer, String>>() {             PublicIterable<sortedmap<integer, string>> call (iterator<tuple2<string, integer>> iter)throwsException {Final intN =Topnum.getvalue (); SortedMap<integer, string> TopN =NewTreemap<integer, string>();  while(Iter.hasnext ()) {Tuple2<string, integer> tuple =Iter.next ();                    Topn.put (tuple._2, tuple._1); if(Topn.size () >N) {topn.remove (Topn.firstkey ()); }                }                returncollections.singletonlist (TopN);        }        }); /** protocol all partitions of TOPN Sortmap, get the final sortmap, length topn * Reduce, data has been to the local cache, this is the final result * Input: Sortmap, Length TOPN, of course there are partitionnum, output: sortmap, length TOPN **/SortedMap<integer, string> finaltopn = Partitions.reduce (NewFunction2<sortedmap<integer, String>, Sortedmap<integer, String>, Sortedmap<integer, String> >() {             PublicSortedmap<integer, string> call (Sortedmap<integer, string> M1, Sortedmap<integer, String> m2)throwsException {Final intN =Topnum.getvalue (); SortedMap<integer, string> TopN =NewTreemap<integer, string>();  for(Map.entry<integer, string>Entry:m1.entrySet ())                    {Topn.put (Entry.getkey (), Entry.getvalue ()); if(Topn.size () >N) {topn.remove (Topn.firstkey ()); }                }                 for(Map.entry<integer, string>Entry:m2.entrySet ())                    {Topn.put (Entry.getkey (), Entry.getvalue ()); if(Topn.size () >N) {topn.remove (Topn.firstkey ()); }                }                returnTopN;        }        }); /** Print the final result of the local cache **/         for(Map.entry<integer, string>Entry:finalTopN.entrySet ()) {System.out.println (Entry.getkey ()+ " -- " +Entry.getvalue ()); }    }     Public Static voidMain (string[] args) {String InputPath= Args[0]; Topnspark Topnmapper=NewTopnspark (10, InputPath);    Topnmapper.run (); }}

Big Data algorithm design pattern (1)-TopN Spark implementation

Related Article

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.