C # permutation and combination classes

Source: Internet
Author: User

C # permutation and combination classes

//-----------------------------------------------------------------------------
//
Algorithm: Permutation combination class
//
Copyright (C) snowdust
Personal blog Http://blog.csdn.net/snowdust & http://snowdust.cnblogs.com
MSN & Email [email protected]
//
This source code is free for all kinds of software (including commercial software)
Allow further modification and development of this Code
However, you must keep this copyright information intact.
//
The calling method is as follows:
//
1.GetPermutation (t[], StartIndex, EndIndex)
Arranges startindex to Endindex, remaining elements unchanged
//
2.GetPermutation (t[])
Returns the full array of all elements
//
3.GetPermutation (t[], N)
Returns the arrangement of n elements in an array
//
4.GetCombination (t[], N)
Returns a combination of n elements in an array
//
Version history:
V0.1 2010-01-20 Summary: first-time creation
//
//-----------------------------------------------------------------------------

Using System;
Using System.Collections.Generic;

namespace algorithms
{
public class Permutationandcombination<t>
{
<summary>
Swap two variables
</summary>
<param name= "A" > Variable 1</param>
<param name= "B" > variable 2</param>
public static void Swap (Ref t A, ref T B)
{
T temp = A;
A = b;
b = temp;
}

<summary>
Recursive algorithm for array combination (Private member)
</summary>
<param name= "List" > Return model </param>
<param name= "T" > Array </param>
<param name= "n" > Auxiliary variables </param>
<param name= "M" > Auxiliary variables </param>
<param name= "B" > Auxiliary array </param>
<param name= "M" > Auxiliary variable m</param>
private static void Getcombination (ref list<t[]> List, t[] T, int n, int m, int[] b, int m)
{
for (int i = n; i >= m; i--)
{
B[m-1] = i-1;
if (M > 1)
{
Getcombination (ref list, T, I-1, m-1, B, M);
}
Else
{
if (list = = null)
{
List = new list<t[]> ();
}
t[] temp = new T[m];
for (int j = 0; J < B.length; J + +)
{
TEMP[J] = t[b[j]];
}
List. ADD (temp);
}
}
}

<summary>
Recursive algorithm permutation (private member)
</summary>
<param name= "List" > returned lists </param>
<param name= "T" > Array </param>
<param name= "StartIndex" > Start label </param>
<param name= "EndIndex" > End label </param>
private static void Getpermutation (ref list<t[]> List, t[] T, int startIndex, int endIndex)
{
if (StartIndex = = EndIndex)
{
if (list = = null)
{
List = new list<t[]> ();
}
t[] temp = new T[t.length];
T.copyto (temp, 0);
List. ADD (temp);
}
Else
{
for (int i = startIndex; I <= endIndex; i++)
{
Swap (ref T[startindex], ref t[i]);
Getpermutation (ref list, T, StartIndex + 1, endIndex);
Swap (ref T[startindex], ref t[i]);
}
}
}

<summary>
Order from the starting label to the end label, the remaining elements are unchanged
</summary>
<param name= "T" > Array </param>
<param name= "StartIndex" > Start label </param>
<param name= "EndIndex" > End label </param>
<returns> pattern from start label to end label arrangement </returns>
public static list<t[]> getpermutation (t[] T, int startIndex, int endIndex)
{
if (StartIndex < 0 | | endIndex > T.LENGTH-1)
{
return null;
}
list<t[]> list = new list<t[]> ();
Getpermutation (ref list, T, StartIndex, EndIndex);
return list;
}

<summary>
Returns the full array of all elements
</summary>
<param name= "T" > Array </param>
<returns> All-arranged paradigm </returns>
public static list<t[]> getpermutation (t[] T)
{
Return getpermutation (t, 0, t.length-1);
}

<summary>
Find the arrangement of n elements in an array
</summary>
<param name= "T" > Array </param>
<param name= "n" > Number of elements </param>
<returns> arrangement of n elements in an array </returns>
public static list<t[]> getpermutation (t[] T, int n)
{
if (n > T.length)
{
return null;
}
list<t[]> list = new list<t[]> ();
list<t[]> C = getcombination (T, N);
for (int i = 0; i < C.count; i++)
{
list<t[]> L = new list<t[]> ();
Getpermutation (ref L, C[i], 0, n-1);
List. AddRange (l);
}
return list;
}


<summary>
Find the combination of n elements in an array
</summary>
<param name= "T" > Array </param>
<param name= "n" > Number of elements </param>
<returns> pattern of the combination of n elements in an array </returns>
public static list<t[]> getcombination (t[] T, int n)
{
if (T.length < n)
{
return null;
}
int[] temp = new Int[n];
list<t[]> list = new list<t[]> ();
Getcombination (ref list, T, T.length, N, temp, n);
return list;
}
}
}

Call:

int[] arr = new INT[6];
for (int i = 0; i < arr. Length; i++)
{
Arr[i] = i + 1;
}
Arrange
list<int[]> lst_permutation = Algorithms.permutationandcombination<int>. Getpermutation (arr, 3);
Find a combination
list<int[]> lst_combination = Algorithms.permutationandcombination<int>. Getcombination (arr, 3);

C # permutation and combination classes

Related Article

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.