Calculate the circumference rate by using the Newton series, 15 decimal places after the decimal point, Newton's circumference Rate
In the 18th century, mathematicians developed a number of Infinite Series for calculating the circumference rate. Among them, Newton studied the following series:
This Infinite Series is used to calculate the circumference rate to 15 digits after the decimal point.
Method: perform the following simple deformation on the above formula to conveniently compile the program.
1 #include <iostream> 2 #include <iomanip> 3 using namespace std; 4 5 int main( void ) /* name: Pinew.cpp */ 6 { double s, t, p; 7 int a, b, n; 8 s=3.0; t=3.0; a=1; b=2; n=0; 9 cout<<fixed<<setprecision(15);10 do11 { t=0.25*t*a/b;12 p=t/(a+2);13 s+=p;14 n++;15 cout<<"n="<<setw(4)<<n<<" Pi="<<s<<endl;16 a+=2;17 b+=2;18 }while(p>=1E-18);19 20 return 0;21 }
Running result:
N = 1 Pi = 3.125000000000000
N = 2 Pi = 3.139062500000000
N = 3 Pi = 3.141155133928572
N = 4 Pi = 3.141511172340030
N = 5 Pi = 3.141576715774867
N = 6 Pi = 3.141589425319122
N = 7pi = 3.141591982358383
N = 8 PIOs = 3.141592511157862
N = 9 Pi = 3.141592622870617
N = 10pi = 3.141592646875561
N = 11 Pi = 3.141592652105887
N = 12 Pi = 3.141592653258738
N = 13 Pi = 3.141592653515338
N = 14 Pi = 3.141592653572930
N = 15 Pi = 3.141592653585950
N = 16 Pi = 3.141592653588912
N = 17 Pi = 3.141592653589590
N = 18 Pi = 3.141592653589746
N = 19 Pi = 3.141592653589782
N = 20 PIOs = 3.141592653589790
N = 21 Pi = 3.141592653589792
N = 22 PIOs = 3.141592653589793
N = 23 Pi = 3.141592653589793
N = 24 Pi = 3.141592653589793
N = 25 Pi = 3.141592653589793
N = 26 Pi = 3.141592653589793
N = 27 PIOs = 3.141592653589793