Select a child string that does not meet the M segment from the N number. The length of the Child string is K.
DP, DP is still too weak. At the beginning, the DP equation was written as O (N ^ 3 )...
DP [I] [J]: The sequence ending with num [I], which is divided into the largest sum of J segments.
DP [I] [J] = max (DP [k] [J-1] + sum [I]-sum [I-m, in fact, as long as the first cycle is the number of segments selected, the number of digits in the second cycle
I changed my mind.
DP [I] [J]: Number of the first I, the maximum sum of the values divided into J segments
DP [I] [J] = max (DP [I-1] [J], DP [I-m] [J-1] + sum [I]-sum [I-m])
Idea: two-dimensional, so the written DP equation must be transferred either from the first-dimensional change or from the second-dimensional change.
AC code:
//#pragma comment(linker, "/STACK:102400000,102400000")#include <cstdio>#include <cstring>#include <algorithm>#include <string>#include <iostream>#include <iomanip>#include <cmath>#include <map>#include <set>#include <queue>using namespace std;#define ls(rt) rt*2#define rs(rt) rt*2+1#define ll long long#define ull unsigned long long#define rep(i,s,e) for(int i=s;i<e;i++)#define repe(i,s,e) for(int i=s;i<=e;i++)#define CL(a,b) memset(a,b,sizeof(a))#define IN(s) freopen(s,"r",stdin)#define OUT(s) freopen(s,"w",stdout)const ll ll_INF = ((ull)(-1))>>1;const double EPS = 1e-8;const double pi = acos(-1);const int INF = 100000000;const int MAXN = 5000+100;ll num[MAXN],dp[MAXN][MAXN],pp[MAXN];int n,m,k;ll solve(){ CL(dp,0); for(int i=m;i<=n;i++) for(int j=1;j<=k;j++) dp[i][j]=max(dp[i-m][j-1]+pp[i]-pp[i-m],dp[i-1][j]); return dp[n][k];}int main(){ //IN("C.txt"); while(~scanf("%d%d%d",&n,&m,&k)) { pp[0]=0; for(int i=1;i<=n;i++) { scanf("%I64d",&num[i]); pp[i]=pp[i-1]+num[i]; } printf("%I64d\n",solve()); } return 0;}
The first idea of the AC code (from http://blog.csdn.net/qian99/article/details/39397101 ):
#include<iostream> #include<cstdio> #include<cstring> #include<string> #include<algorithm> #include<map> #include<queue> #include<stack> #include<set> #include<cmath> #include<vector> #define inf 0x3f3f3f3f #define Inf 0x3FFFFFFFFFFFFFFFLL #define eps 1e-8 #define pi acos(-1.0) using namespace std; typedef long long ll; const int maxn = 5000 + 5; int a[maxn]; ll sum[maxn],dp[maxn][maxn],maxv[maxn]; int main() { // freopen("in.txt","r",stdin); // freopen("out.txt","w",stdout); int n,m,k; scanf("%d%d%d",&n,&m,&k); for(int i = 1;i <= n;++i) scanf("%d",&a[i]); sum[0] = 0; for(int i = 1;i <= n;++i) sum[i] = sum[i-1] + a[i]; memset(dp,0xff,sizeof(dp)); memset(maxv,0,sizeof(maxv)); dp[0][0] = 0; for(int j = 1;j <= k;++j) { for(int i = 1;i <= n;++i) { if(i - m >= 0) { dp[i][j] = max(dp[i][j],maxv[i-m] + sum[i] - sum[i-m]); } } for(int i = 1;i <= n;++i) maxv[i] = max(maxv[i-1],dp[i][j]); } ll ans = 0; for(int i = 1;i <= n;++i) if(dp[i][k] != -1) ans = max(ans,dp[i][k]); printf("%I64d\n",ans); return 0; }
Codeforces round #267 (Div. 2) C George and job