30 tips on Python and 30 tips on Python
When I started learning python, I began to summarize a collection of python tips. When will I go to Stack Overflow?
Or when I saw a piece of cool code in an open-source software, I was surprised: I could do this again !, At that time, I tried the code myself and added it to my set after I understood its overall idea. This blog is actually a part of the public appearance after this collection. If you are already a python guru, You should know most of the usage here, but I think you should be able to find some new tips that you don't know. If you were a c, c ++, and java programmer, and you are learning python at the same time, or you are just a beginner in programming, then you will see a lot of useful practical skills that can surprise you, just as I did at the beginning.
Every technique and language usage will be presented to you in an example, without any additional instructions. I have tried my best to make every example easy to understand, but readers may still have some obscure points because of their different familiarity with python. So if these examples cannot be understood by you, at least the title of this example will help you when you go to google search.
The entire set is probably sorted by difficulty level. Simplicity is common at the beginning and rarely at the end.
1.1 binning
>>> a, b, c = 1, 2, 3>>> a, b, c(1, 2, 3)>>> a, b, c = [1, 2, 3]>>> a, b, c(1, 2, 3)>>> a, b, c = (2 * i + 1 for i in range(3))>>> a, b, c(1, 3, 5)>>> a, (b, c), d = [1, (2, 3), 4]>>> a1>>> b2>>> c3>>> d4
1.2 binning variable exchange
>>> a, b = 1, 2>>> a, b = b, a>>> a, b(2, 1)
1.3 extension unpacking (only compatible with python3)
>>> a, *b, c = [1, 2, 3, 4, 5]>>> a1>>> b[2, 3, 4]>>> c5
1.4 negative Index
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]>>> a[-1]10>>> a[-3]8
1.5 cut list
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]>>> a[2:8][2, 3, 4, 5, 6, 7]
1.6 negative index cutting list
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]>>> a[-4:-2][7, 8]
1.7 specified step cut list
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]>>> a[::2][0, 2, 4, 6, 8, 10]>>> a[::3][0, 3, 6, 9]>>> a[2:8:2][2, 4, 6]
1.8 negative step cut list
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]>>> a[::-1][10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]>>> a[::-2][10, 8, 6, 4, 2, 0]
1.9 list cut assignment
>>> a = [1, 2, 3, 4, 5]>>> a[2:3] = [0, 0]>>> a[1, 2, 0, 0, 4, 5]>>> a[1:1] = [8, 9]>>> a[1, 8, 9, 2, 0, 0, 4, 5]>>> a[1:-1] = []>>> a[1, 5]
1.10 Naming list Cutting Method
>>> a = [0, 1, 2, 3, 4, 5]>>> LASTTHREE = slice(-3, None)>>> LASTTHREEslice(-3, None, None)>>> a[LASTTHREE][3, 4, 5]
1.11 list and iterator compression and decompression
>>> a = [1, 2, 3]>>> b = ['a', 'b', 'c']>>> z = zip(a, b)>>> z[(1, 'a'), (2, 'b'), (3, 'c')]>>> zip(*z)[(1, 2, 3), ('a', 'b', 'c')]
1.12 list adjacent element Compressors
>>> a = [1, 2, 3, 4, 5, 6]>>> zip(*([iter(a)] * 2))[(1, 2), (3, 4), (5, 6)] >>> group_adjacent = lambda a, k: zip(*([iter(a)] * k))>>> group_adjacent(a, 3)[(1, 2, 3), (4, 5, 6)]>>> group_adjacent(a, 2)[(1, 2), (3, 4), (5, 6)]>>> group_adjacent(a, 1)[(1,), (2,), (3,), (4,), (5,), (6,)] >>> zip(a[::2], a[1::2])[(1, 2), (3, 4), (5, 6)] >>> zip(a[::3], a[1::3], a[2::3])[(1, 2, 3), (4, 5, 6)] >>> group_adjacent = lambda a, k: zip(*(a[i::k] for i in range(k)))>>> group_adjacent(a, 3)[(1, 2, 3), (4, 5, 6)]>>> group_adjacent(a, 2)[(1, 2), (3, 4), (5, 6)]>>> group_adjacent(a, 1)[(1,), (2,), (3,), (4,), (5,), (6,)]
1.13 sliding value windows with compressors and iterators in the list
>>> def n_grams(a, n):... z = [iter(a[i:]) for i in range(n)]... return zip(*z)...>>> a = [1, 2, 3, 4, 5, 6]>>> n_grams(a, 3)[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]>>> n_grams(a, 2)[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]>>> n_grams(a, 4)[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]
1.14 reverse dictionary with a compressed file
>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}>>> m.items()[('a', 1), ('c', 3), ('b', 2), ('d', 4)]>>> zip(m.values(), m.keys())[(1, 'a'), (3, 'c'), (2, 'b'), (4, 'd')]>>> mi = dict(zip(m.values(), m.keys()))>>> mi{1: 'a', 2: 'b', 3: 'c', 4: 'd'}
1.15 expand the list
>>> a = [[1, 2], [3, 4], [5, 6]]>>> list(itertools.chain.from_iterable(a))[1, 2, 3, 4, 5, 6] >>> sum(a, [])[1, 2, 3, 4, 5, 6] >>> [x for l in a for x in l][1, 2, 3, 4, 5, 6] >>> a = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]>>> [x for l1 in a for l2 in l1 for x in l2][1, 2, 3, 4, 5, 6, 7, 8] >>> a = [1, 2, [3, 4], [[5, 6], [7, 8]]]>>> flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]>>> flatten(a)[1, 2, 3, 4, 5, 6, 7, 8]
1.16 generator expression
>>> g = (x ** 2 for x in xrange(10))>>> next(g)0>>> next(g)1>>> next(g)4>>> next(g)9>>> sum(x ** 3 for x in xrange(10))2025>>> sum(x ** 3 for x in xrange(10) if x % 3 == 1)408
1.17 dictionary Derivation
>>> m = {x: x ** 2 for x in range(5)}>>> m{0: 0, 1: 1, 2: 4, 3: 9, 4: 16} >>> m = {x: 'A' + str(x) for x in range(10)}>>> m{0: 'A0', 1: 'A1', 2: 'A2', 3: 'A3', 4: 'A4', 5: 'A5', 6: 'A6', 7: 'A7', 8: 'A8', 9: 'A9'}
1.18 use a dictionary to derive a reverse dictionary
>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}>>> m{'d': 4, 'a': 1, 'b': 2, 'c': 3}>>> {v: k for k, v in m.items()}{1: 'a', 2: 'b', 3: 'c', 4: 'd'}
1.19 name tuples
>>> Point = collections.namedtuple('Point', ['x', 'y'])>>> p = Point(x=1.0, y=2.0)>>> pPoint(x=1.0, y=2.0)>>> p.x1.0>>> p.y2.0
1.20 inherit the name tuples
>>> class Point(collections.namedtuple('PointBase', ['x', 'y'])):... __slots__ = ()... def __add__(self, other):... return Point(x=self.x + other.x, y=self.y + other.y)...>>> p = Point(x=1.0, y=2.0)>>> q = Point(x=2.0, y=3.0)>>> p + qPoint(x=3.0, y=5.0)
1.21 operation set
>>> A = {1, 2, 3, 3}>>> Aset([1, 2, 3])>>> B = {3, 4, 5, 6, 7}>>> Bset([3, 4, 5, 6, 7])>>> A | Bset([1, 2, 3, 4, 5, 6, 7])>>> A & Bset([3])>>> A - Bset([1, 2])>>> B - Aset([4, 5, 6, 7])>>> A ^ Bset([1, 2, 4, 5, 6, 7])>>> (A ^ B) == ((A - B) | (B - A))True
1.22 multiple sets of operations
>>> A = collections.Counter([1, 2, 2])>>> B = collections.Counter([2, 2, 3])>>> ACounter({2: 2, 1: 1})>>> BCounter({2: 2, 3: 1})>>> A | BCounter({2: 2, 1: 1, 3: 1})>>> A & BCounter({2: 2})>>> A + BCounter({2: 4, 1: 1, 3: 1})>>> A - BCounter({1: 1})>>> B - ACounter({3: 1})
1.23 measure the most common elements in the iteratable.
>>> A = collections.Counter([1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7])>>> ACounter({3: 4, 1: 2, 2: 2, 4: 1, 5: 1, 6: 1, 7: 1})>>> A.most_common(1)[(3, 4)]>>> A.most_common(3)[(3, 4), (1, 2), (2, 2)]
1.24 queues that can be operated on both ends
>>> Q = collections.deque()>>> Q.append(1)>>> Q.appendleft(2)>>> Q.extend([3, 4])>>> Q.extendleft([5, 6])>>> Qdeque([6, 5, 2, 1, 3, 4])>>> Q.pop()4>>> Q.popleft()6>>> Qdeque([5, 2, 1, 3])>>> Q.rotate(3)>>> Qdeque([2, 1, 3, 5])>>> Q.rotate(-3)>>> Qdeque([5, 2, 1, 3])
1.25 dual-end queue with maximum length
>>> last_three = collections.deque(maxlen=3)>>> for i in xrange(10):... last_three.append(i)... print ', '.join(str(x) for x in last_three)...00, 10, 1, 21, 2, 32, 3, 43, 4, 54, 5, 65, 6, 76, 7, 87, 8, 9
1.26 sorteddictionary
>>> m = dict((str(x), x) for x in range(10))>>> print ', '.join(m.keys())1, 0, 3, 2, 5, 4, 7, 6, 9, 8>>> m = collections.OrderedDict((str(x), x) for x in range(10))>>> print ', '.join(m.keys())0, 1, 2, 3, 4, 5, 6, 7, 8, 9>>> m = collections.OrderedDict((str(x), x) for x in range(10, 0, -1))>>> print ', '.join(m.keys())10, 9, 8, 7, 6, 5, 4, 3, 2, 1
1.27 default dictionary
>>> m = dict()>>> m['a']Traceback (most recent call last): File "<stdin>", line 1, in <module>KeyError: 'a'>>>>>> m = collections.defaultdict(int)>>> m['a']0>>> m['b']0>>> m = collections.defaultdict(str)>>> m['a']''>>> m['b'] += 'a'>>> m['b']'a'>>> m = collections.defaultdict(lambda: '[default value]')>>> m['a']'[default value]'>>> m['b']'[default value]'
1.28 simple tree expression of default dictionary
>>> import json>>> tree = lambda: collections.defaultdict(tree)>>> root = tree()>>> root['menu']['id'] = 'file'>>> root['menu']['value'] = 'File'>>> root['menu']['menuitems']['new']['value'] = 'New'>>> root['menu']['menuitems']['new']['onclick'] = 'new();'>>> root['menu']['menuitems']['open']['value'] = 'Open'>>> root['menu']['menuitems']['open']['onclick'] = 'open();'>>> root['menu']['menuitems']['close']['value'] = 'Close'>>> root['menu']['menuitems']['close']['onclick'] = 'close();'>>> print json.dumps(root, sort_keys=True, indent=4, separators=(',', ': ')){ "menu": { "id": "file", "menuitems": { "close": { "onclick": "close();", "value": "Close" }, "new": { "onclick": "new();", "value": "New" }, "open": { "onclick": "open();", "value": "Open" } }, "value": "File" }}
1.29 mappings between objects and unique counts
>>> import itertools, collections>>> value_to_numeric_map = collections.defaultdict(itertools.count().next)>>> value_to_numeric_map['a']0>>> value_to_numeric_map['b']1>>> value_to_numeric_map['c']2>>> value_to_numeric_map['a']0>>> value_to_numeric_map['b']1
1.30 the largest and smallest list elements
>>> a = [random.randint(0, 100) for __ in xrange(100)]>>> heapq.nsmallest(5, a)[3, 3, 5, 6, 8]>>> heapq.nlargest(5, a)[100, 100, 99, 98, 98]
1.31 Cartesian product of two lists
>>> for p in itertools.product([1, 2, 3], [4, 5]):(1, 4)(1, 5)(2, 4)(2, 5)(3, 4)(3, 5)>>> for p in itertools.product([0, 1], repeat=4):... print ''.join(str(x) for x in p)...0000000100100011010001010110011110001001101010111100110111101111
1.32 list combination and list element substitution combination
>>> for c in itertools.combinations([1, 2, 3, 4, 5], 3):... print ''.join(str(x) for x in c)...123124125134135145234235245345>>> for c in itertools.combinations_with_replacement([1, 2, 3], 2):... print ''.join(str(x) for x in c)...111213222333
1.33 list element arrangement and combination
>>> for p in itertools.permutations([1, 2, 3, 4]):... print ''.join(str(x) for x in p)...123412431324134214231432213421432314234124132431312431423214324134123421412341324213423143124321
1.34 connectable iterator
>>> a = [1, 2, 3, 4]>>> for p in itertools.chain(itertools.combinations(a, 2), itertools.combinations(a, 3)):... print p...(1, 2)(1, 3)(1, 4)(2, 3)(2, 4)(3, 4)(1, 2, 3)(1, 2, 4)(1, 3, 4)(2, 3, 4)>>> for subset in itertools.chain.from_iterable(itertools.combinations(a, n) for n in range(len(a) + 1))... print subset...()(1,)(2,)(3,)(4,)(1, 2)(1, 3)(1, 4)(2, 3)(2, 4)(3, 4)(1, 2, 3)(1, 2, 4)(1, 3, 4)(2, 3, 4)(1, 2, 3, 4)
1.35 specify column Clustering Based on the file
>>> import itertools>>> with open('contactlenses.csv', 'r') as infile:... data = [line.strip().split(',') for line in infile]...>>> data = data[1:]>>> def print_data(rows):... print '\n'.join('\t'.join('{: <16}'.format(s) for s in row) for row in rows)... >>> print_data(data)young myope no reduced noneyoung myope no normal softyoung myope yes reduced noneyoung myope yes normal hardyoung hypermetrope no reduced noneyoung hypermetrope no normal softyoung hypermetrope yes reduced noneyoung hypermetrope yes normal hardpre-presbyopic myope no reduced nonepre-presbyopic myope no normal softpre-presbyopic myope yes reduced nonepre-presbyopic myope yes normal hardpre-presbyopic hypermetrope no reduced nonepre-presbyopic hypermetrope no normal softpre-presbyopic hypermetrope yes reduced nonepre-presbyopic hypermetrope yes normal nonepresbyopic myope no reduced nonepresbyopic myope no normal nonepresbyopic myope yes reduced nonepresbyopic myope yes normal hardpresbyopic hypermetrope no reduced nonepresbyopic hypermetrope no normal softpresbyopic hypermetrope yes reduced nonepresbyopic hypermetrope yes normal none >>> data.sort(key=lambda r: r[-1])>>> for value, group in itertools.groupby(data, lambda r: r[-1]):... print '-----------'... print 'Group: ' + value... print_data(group)...-----------Group: hardyoung myope yes normal hardyoung hypermetrope yes normal hardpre-presbyopic myope yes normal hardpresbyopic myope yes normal hard-----------Group: noneyoung myope no reduced noneyoung myope yes reduced noneyoung hypermetrope no reduced noneyoung hypermetrope yes reduced nonepre-presbyopic myope no reduced nonepre-presbyopic myope yes reduced nonepre-presbyopic hypermetrope no reduced nonepre-presbyopic hypermetrope yes reduced nonepre-presbyopic hypermetrope yes normal nonepresbyopic myope no reduced nonepresbyopic myope no normal nonepresbyopic myope yes reduced nonepresbyopic hypermetrope no reduced nonepresbyopic hypermetrope yes reduced nonepresbyopic hypermetrope yes normal none-----------Group: softyoung myope no normal softyoung hypermetrope no normal softpre-presbyopic myope no normal softpre-presbyopic hypermetrope no normal softpresbyopic hypermetrope no normal soft