Python Data Visualization Library-matplotlib

Source: Internet
Author: User

Line chart Drawing:

Import Pandas as Pdunrate = Pd.read_csv (' unrate.csv ') unrate[' date ' = Pd.to_datetime (unrate[' date ') #可将1948/1/ 1 time format conversion to 1948-01-01print (Unrate.head (12))

Results:

         DATE  VALUE0  1948-01-01    3.41  1948-02-01    3.82  1948-03-01    4.03  1948-04-01    3.94  1948-05-01    3.55  1948-06-01    3.66  1948-07-01    3.67  1948-08-01    3.98  1948-09-01    3.89  1948-10-01    3.710 1948-11-01 3.811    1948-12-01    4.0
View Code
Import Matplotlib.pyplot as Plt#%matplotlib inline#using the different pyplot functions, we can create, customize, and Dis Play a plot. For example, we can use 2 functions to:p Lt.plot () plt.show ()

Results:

First_twelve = Unrate[0:12]plt.plot (first_twelve[' DATE '), first_twelve[' VALUE ']) plt.show ()

Results:

#While The y-axis looks fine, the x-axis tick labels is too close together and is unreadable#we can rotate the x-axis ti CK labels by degrees so they don ' t overlap#we can specify degrees of rotation using a float or integer value.plt.plot (f irst_twelve[' DATE ', first_twelve[' VALUE ']) plt.xticks (rotation=45) #指定x轴标注的角度, chosen here for 45 degrees #print Help (Plt.xticks) Plt.show ()

Results:

#xlabel (): Accepts a string value, which gets set as the x-axis label. #ylabel (): Accepts a string value, which is set as T He y-axis label. #title (): Accepts a string value, which is set as the plot title.plt.plot (first_twelve[' DATE '), First_twel ve[' VALUE ']) plt.xticks (rotation=90) plt.xlabel (' Month ') plt.ylabel (' unemployment rate ') plt.title (' Monthly Unemployment Trends, 1948 ') Plt.show ()

Results:

Sub-chart operations:

#add_subplot (First,second,index) first means number of Row,second means number of Column.import Matplotlib.pyplot as Pltfi g = Plt.figure () #规定画图区间 (paint field) Ax1 = Fig.add_subplot (3,2,1) ax2 = Fig.add_subplot (3,2,2) ax3 = Fig.add_subplot (3,2,6) Plt.show ()

Results:

Import NumPy as Npfig = Plt.figure () #fig = Plt.figure (figsize= (3, 3)) #figsize指定图的长和宽ax1 = Fig.add_subplot (2,1,1) ax2 = Fig. Add_subplot (2,1,2) Ax1.plot (Np.random.randint (1,5,5), Np.arange (5)) Ax2.plot (Np.arange (Ten), Np.arange (10)) Plt.show ()

Results:

unrate[' Month ' = unrate[' date '].dt.monthunrate[' MONTH ' = unrate[' date '].dt.monthfig = Plt.figure (figsize= (6,3)) # Draw two lines in the same diagram Plt.plot (unrate[0:12][' MONTH ', unrate[0:12][' VALUE '), c= ' Red ') #c的值可以用小写或缩写或rgb颜色通道值也可以plt. Plot (unrate [12:24] [' MONTH '], unrate[12:24][' VALUE '], c= ' Blue ') plt.show ()

Results:

Fig = Plt.figure (figsize= (10,6)) colors = [' Red ', ' blue ', ' green ', ' orange ', ' black ']for I in range (5):    Start_index = i *12    End_index = (i+1) *12    subset = Unrate[start_index:end_index]    plt.plot (subset[' MONTH '), subset[' VALUE '], c=colors[i])    plt.show ()

Results:

Fig = Plt.figure (figsize= (10,6)) colors = [' Red ', ' blue ', ' green ', ' orange ', ' black ']for I in range (5):    Start_index = i *12    End_index = (i+1) *12    subset = unrate[start_index:end_index]    label = STR (1948 + i)    Plt.plot (subset[ ' MONTH '], subset[' VALUE '], c=colors[i], Label=label) plt.legend (loc= ' best ') #显示label   Loc refers to the place where the label is placed, Best is automatically selected for optimal location #print Help (Plt.legend) plt.show ()

Results:

Fig = Plt.figure (figsize= (10,6)) colors = [' Red ', ' blue ', ' green ', ' orange ', ' black ']for I in range (5):    Start_index = i *12    End_index = (i+1) *12    subset = unrate[start_index:end_index]    label = STR (1948 + i)    Plt.plot (subset[ ' Month '], subset[' VALUE '], c=colors[i], Label=label) plt.legend (loc= ' upper left ') Plt.xlabel (' month, Integer ') Plt.ylabel (' unemployment rate, Percent ') plt.title (' Monthly unemployment Trends, 1948-1952 ') plt.show ()

Results:

  

Bar graphs and scatter plots:

Python Data Visualization Library-matplotlib

Related Article

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.