Getting started with Big Data day 22nd--spark (iii) custom partitioning, sorting, and finding

Source: Internet
Author: User

one, custom partition

  1. Overview

The default is the hash of the partitioning strategy, which is similar to Hadoop, the specific partition description, see: 68491115

  2. Implement

 PackageCn.itcast.spark.day3ImportJava.net.URLImportOrg.apache.spark. {Hashpartitioner, partitioner, sparkconf, sparkcontext}Importscala.collection.mutable/*** Created by Root on 2016/5/18. */Object Urlcountpartition {def main (args:array[string]) {val conf=NewSparkconf (). Setappname ("Urlcountpartition"). Setmaster ("local[2]") Val SC=Newsparkcontext (conf)//RDD1 data is sliced, the tuple is placed (URL, 1)Val rdd1 = Sc.textfile ("C://itcast.log"). Map (line ={val F= Line.split ("\ t") (F (1), 1)}) Val Rdd2= Rdd1.reducebykey (_ +_) Val rdd3= Rdd2.map (T = ={val URL=t._1 Val Host=Newurl (url). GetHost (host, (URL, t._2))}) Val ints=Rdd3.map (_._1). Distinct (). Collect () Val Hostparitioner=NewHostparitioner (ints)//val rdd4 = Rdd3.partitionby (new Hashpartitioner (ints.length))Val rdd4= Rdd3.partitionby (Hostparitioner). Mappartitions (It{it.toList.sortBy (_._2._2). Reverse.take (2). Iterator}) Rdd4.saveastextfile ("C://out4")    //println (Rdd4.collect (). Tobuffer)sc.stop ()}}/*** Determines which partition the data is in *@paramins*/classHostparitioner (ins:array[string])extendsPartitioner {val Parmap=Newmutable. Hashmap[string, Int] () var count= 0 for(I <-ins) {Parmap+ = (I-count) Count+ = 1} override def Numpartitions:int=ins.length override def getpartition (key:any): Int={parmap.getorelse (key.tostring,0)  }}

//Connect with Hadoop and don't repeat

Second, custom sorting

  This is basically a combination of the previous implicit conversions: (Here you can use the sample class to get an instance without new and also for pattern matching)

 PackageCn.itcast.spark.day3ImportOrg.apache.spark. {sparkconf, sparkcontext}object ordercontext {implicit val girlordering=NewOrdering[girl] {override def compare (X:girl, y:girl): Int= {      if(X.facevalue > Y.facevalue) 1Else if(X.facevalue = =y.facevalue) {if(X.age > Y.age)-1Else1      } Else-1    }  }}/*** Created by Root on 2016/5/18. *///sort = Rule First press Favevalue, compare age//Name,favevalue,ageObject Customsort {def main (args:array[string]) {val conf=NewSparkconf (). Setappname ("Customsort"). Setmaster ("local[2]") Val SC=Newsparkcontext (conf) Val rdd1= Sc.parallelize (List ("Yuihatano", 1, 95, 22, 3, ("Angelababy", 2), ("Jujingyi",)))    Importordercontext._ Val rdd2= Rdd1.sortby (x = Girl (x._2, X._3),false) println (Rdd2.collect (). Tobuffer) Sc.stop ()}}/*** First Way *@paramFacevalue *@paramAgecase class Girl (Val facevalue:int, Val age:int) extends Ordered[girl] with Serializable {override Def compare ( That:girl): Int = {if (This.facevalue = = That.facevalue) {That.age-this.age} else {this.facevalue-t Hat.facevalue} }}*//*** Second, by implicit conversion complete sorting *@paramFacevalue *@param Age*/ Case classGirl (Facevalue:int, Age:int)extendsSerializable

Getting started with Big Data day 22nd--spark (iii) custom partitioning, sorting, and finding

Related Article

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.