--> The operand range is <2 ^ 20, which indicates bitwise operation. each operand can be converted into a binary number of up to 20 bits, after the number of n + 1 Operations is obtained, the probability of 1 appears for each binary bit (the probability of 0 does not need to be calculated. If this bit is 0, the total number is irrelevant to this bit, only occupies space ).
Set a [I] [j] to represent the j-th binary bit of the I-th number; p [I] [j] to represent the bit of the binary, after the first I count operation, the probability of j is obtained (j is 0 or 1). d [I] indicates the probability that the I th binary bit appears 1 after the n + 1 count operation.
For p [I] [j], the state transition equation is as follows:
P [I] [1] = p [I-1] [1] * P [I] + probabilities produced by various computations.
P [I] [0] = 1-p [I] [1].
#include <cstdio>using namespace std;const int maxn = 200 + 3;const int maxm = 20 + 3;int A[maxn], a[maxn][maxm], n;char O[maxn];double P[maxn], p[maxn][2], d[maxm];void read(){ int i; for(i = 0; i < n+1; i++) scanf("%d", &A[i]); for(i = 1; i <= n; i++){ getchar(); O[i] = getchar(); } for(i = 1; i <= n; i++) scanf("%lf", &P[i]);}void init(){ int i, j; for(i = 0; i < n+1; i++) for(j = 0; j < 20; j++) a[i][j] = (1 << j) & A[i];}void dp(){ int i, bit; for(bit = 0; bit < 20; bit++){ if(a[0][bit]){ p[0][1] = 1; p[0][0] = 0; } else{ p[0][0] = 1; p[0][1] = 0; } for(i = 1; i < n+1; i++){ p[i][1] = p[i-1][1] * P[i]; switch(O[i]){ case '&':{ if(a[i][bit]) p[i][1] += p[i-1][1] * (1 - P[i]); break; } case '|':{ if(a[i][bit]) p[i][1] += 1 - P[i]; else p[i][1] += p[i-1][1] * (1 - P[i]); break; } case '^':{ if(a[i][bit]) p[i][1] += p[i-1][0] * (1 - P[i]); else p[i][1] += p[i-1][1] * (1 - P[i]); break; } } p[i][0] = 1 - p[i][1]; } d[bit] = p[n][1]; }}double solve(){ double ret = 0; for(int i = 0; i < 20; i++) ret += (1 << i) * d[i]; return ret;}int main(){ int kase = 1; while(scanf("%d", &n) == 1){ read(); init(); dp(); printf("Case %d:\n%.6lf\n", kase++, solve()); } return 0;}