[JSOI2008] [BZOJ1036] Tree statistics-tree chain split

Source: Internet
Author: User

Description

There are n nodes on a tree, numbered 1 to N, each with a weight of W.

We will ask you to do some work on this tree in the following form:

I. Change u t: Changing the weight of the node U to t

Ii. QMAX u V: ask for the maximum weight of the node on the path from point u to V

Iii. qsum u V: ask for the weights and values of the nodes on the path from point u to V

Note: Nodes on the path from point u to v include U and V itself

Input & Outputinput

The first behavior of the input file is an integer n, which represents the number of nodes.

The next n–1 line, with 2 integers a and b per line, indicates that there is an edge connected between Node A and Node B.

The next line is n integers, and the I integer WI indicates the weight of node I.

The next 1 lines, an integer q, represent the total number of operations.

The next Q line, one operation per line, is given in the form "Change U T" or "QMAX u V" or "Qsum u V".

Output

For each "QMAX" or "qsum" operation, each line outputs an integer representing the result of the required output.

Sampleinput
41 22 34 14 2 1 312QMAX 3 4QMAX 3 3QMAX 3 2QMAX 2 3QSUM 3 4QSUM 2 1CHANGE 1 5QMAX 3 4CHANGE 3 6QMAX 3 4QMAX 2 4QSUM 3 4
Output
412210656516
Solution

Porcelain single point modification, the path query maximum value, the path query point right and, compared to bare tree profile.
Fear is not a constant more than the Rokua (escape
Code:

#include <iostream> #include <cstdio> #include <algorithm> #include <cstring> #include < cctype> #include <string>using std::min;using std::max;using std::swap;using std::isdigit;using std::memset;  Using std::string;using std::cin;using std::cout;using std::endl;using std::ios;const int maxn = 30005;struct edge{int TO,NXT;}    e[maxn<<1];struct node{int W,mx,tag;    Node () {mx = w = tag = 0; }}TR[MAXN << 2];int lnk[maxn],edgenum;int top[maxn],size[maxn],dep[maxn],son[maxn],f[maxn],dfn[maxn],dfn2[    Maxn];int cnt;int w[maxn],v[maxn],n,m,q;void Add (int bgn,int end) {e[++edgenum].to = end;    E[EDGENUM].NXT = LNK[BGN]; LNK[BGN] = edgenum;}    void Dfs (int x,int fa,int d) {size[x] = 1;    F[X] = FA;    DEP[X] = D;        for (int p = lnk[x]; p; p = e[p].nxt) {int y = e[p].to;        if (y = = FA) continue;        DFS (y, x, D + 1);        SIZE[X] + = Size[y];    if (Size[y] > Size[son[x]]) son[x] = y; }}void DFS2 (int x,int init) {dfn[x] = ++cnt;    W[CNT] = v[x];    TOP[X] = init;    if (!son[x]) return;    DFS2 (Son[x],init);        for (int p = lnk[x]; p; p = e[p].nxt) {int y = e[p].to; if (y = = f[x]| |        y = = Son[x]) continue;    DFS2 (Y,y);        }}void Build (int cur,int l,int R) {if (L = = r) {TR[CUR].W = w[l];        tr[cur].mx = W[l];    Return    } int mid = (L + r) >> 1;    Build (Cur<<1,l,mid);    Build (Cur<<1|1,mid + 1,r);    TR[CUR].W = TR[CUR&LT;&LT;1].W + tr[cur<<1|1].w; tr[cur].mx = max (tr[cur<<1].mx,tr[cur<<1|1].mx);}    int querys (int cur,int l,int r,int l,int r) {int res = 0;        if (l <= l && R >= R) {res + = TR[CUR].W;    return res;    } int mid = (l+r) >>1;    if (l<=mid) res + = Querys (cur<<1,l,mid,l,r);    if (r>mid) res + = Querys (cur<<1|1,mid+1,r,l,r); return res;}    int Queryx (int cur,int l,int r,int l,int r) {int res =-214748; if (l <= l && R; = r) return tr[cur].mx;    int mid = (l+r) >>1;    if (l<=mid) res = max (res, Queryx (cur<<1,l,mid,l,r));    if (r>mid) res = max (res, Queryx (cur<<1|1,mid+1,r,l,r)); return res;}        void pupdate (int cur,int l,int r,int p,int c) {if (L = = r) {TR[CUR].W = C;        tr[cur].mx = C;    Return        } else{int mid = (l+r) >>1;        if (P <= mid) pupdate (CUR&LT;&LT;1,L,MID,P,C);        else Pupdate (CUR&LT;&LT;1|1,MID+1,R,P,C);        TR[CUR].W = TR[CUR&LT;&LT;1].W + tr[cur<<1|1].w;    tr[cur].mx = max (tr[cur<<1].mx,tr[cur<<1|1].mx);    }}//---------------------------int queryts (int x,int y) {int ans = 0;        while (top[x]! = Top[y]) {if (Dep[top[x]] < Dep[top[y]]) swap (x, y);        Ans + = Querys (1,1,n,dfn[top[x]],dfn[x]);    x = f[top[x]];    } if (Dep[x]>dep[y]) swap (x, y);    Ans + = Querys (1,1,n,dfn[x],dfn[y]); return ans;}    int querytx (int x,int y) {int ans =-214748; while (top[x]! = Top[y]) {if (Dep[top[x]] < dep[top[y]) swap (x, y);        ans = max (ans, Queryx (1,1,n,dfn[top[x]],dfn[x));    x = f[top[x]];    } if (Dep[x] > Dep[y]) swap (x, y);    ans = max (ans, Queryx (1,1,n,dfn[x],dfn[y)); return ans;}    int main () {Ios::sync_with_stdio (false);    string S;    int x, y;    CIN >> N;        for (int i = 1; i < n; ++i) {cin >> x >> y;        Add (x, y);    Add (y,x);    } for (int i = 1; I <= n; ++i) cin >> V[i];    DFS (1,0,1);    DFS2 (a);    Build (1,1,n);    CIN >> Q;        for (int i = 1; I <= Q; ++i) {cin >> S;            if (s[0] = = ' C ') {cin >> x >> y;        Pupdate (1,1,n,dfn[x],y);            } else if (s[0] = = ' Q ' && s[1] = = ' M ') {cin >> x >> y;        cout << Querytx (x, y) << Endl;            } else {cin >> x >> y; cout << QuEryts (x, y) << Endl; }} return 0;}

[jsoi2008][bzoj1036] Tree statistics-tree chain split

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.