Machine learning Combat Logistic regression Python code

Source: Internet
Author: User

Tag:erro   .sh   elm   list    reading data     1.7   strip   set   rpc   

#-*-Coding:utf-8-*-"" "Created on Sun, 15:57:18 2017@author:mdz" "" "Http://blog.chinaunix.net/xmlrpc.php?r=blo g/article&uid=9162199&id=4223505 ' Import numpy as np# read Data def loaddataset (): datalist=[];labellist=[] Fr=ope N (' testSet.txt ') for line in Fr.readlines (): Linearr=line.strip (). Split () Datalist.append ([1.0,float] (line Arr[0]), float (linearr[1]) labellist.append (int (linearr[2))) return datalist,labellist# introduce the logistic function Def sigmoid ( INX): Return 1.0/(1+np.exp (-inx)) #梯度下降法拟合回归系数def gradascent (datalist,labellist): Datamat=np.mat (dataList) Labelma T=np.mat (Labellist). Transpose () M,n=np.shape (Datamat) alpha=0.001 maxcycles=500 weights=np.ones ((n,1)) for K in Range (Maxcycles): H=sigmoid (datamat*weights) error= (labelmat-h) weights=weights+alpha*datamat.t Ranspose () *error return weights #画图呈现分类效果def plotbestfit (weights,datalist,labellist): import matplotlib.pyplot as pl T Weights=weights.geta() #返回narray Dataarr=np.array (dataList) N=np.shape (Dataarr) [0] xcord1=[];ycord1=[] xcord2=[];ycord2=[] for I        In range (n): If int (labellist[i]) ==1:xcord1.append (dataarr[i][1]); Ycord1.append (Dataarr[i][2])     Else:xcord2.append (dataarr[i][1]); Ycord2.append (dataarr[i][2]) fig=plt.figure () Ax=fig.add_subplot (111) Ax.scatter (xcord1,ycord1,s=100,c= ' red ', marker= ' s ') ax.scatter (xcord2,ycord2,s=100,c= ' green ', marker= ' o ') X=np.ara Nge ( -3.0,3.0,0.1) y= (-weights[0]-weights[1]*x)/weights[2] Ax.plot (x, y) plt.xlabel (' X1 ') plt.ylabel (' X2 ') pl T.show () #脚本 "Import Tempdatalist,labellist=temp.loaddataset () weights=temp.gradascent (datalist,labellist) Temp.plotbestfit (weights,datalist,labellist) "
TestSet.txt
‘‘‘

-0.017612 14.053064 0
-1.395634 4.662541 1
-0.752157 6.538620 0
-1.322371 7.152853 0
0.423363 11.054677 0
0.406704 7.067335 1
0.667394 12.741452 0
-2.460150 6.866805 1
0.569411 9.548755 0
-0.026632 10.427743 0
0.850433 6.920334 1
1.347183 13.175500 0
1.176813 3.167020 1
-1.781871 9.097953 0
-0.566606 5.749003 1
0.931635 1.589505 1
-0.024205 6.151823 1
-0.036453 2.690988 1
-0.196949 0.444165 1
1.014459 5.754399 1
1.985298 3.230619 1
-1.693453-0.557540 1
-0.576525 11.778922 0
-0.346811-1.678730 1
-2.124484 2.672471 1
1.217916 9.597015 0
-0.733928 9.098687 0
-3.642001-1.618087 1
0.315985 3.523953 1
1.416614 9.619232 0
-0.386323 3.989286 1
0.556921 8.294984 1
1.224863 11.587360 0
-1.347803-2.406051 1
1.196604 4.951851 1
0.275221 9.543647 0
0.470575 9.332488 0
-1.889567 9.542662 0
-1.527893 12.150579 0
-1.185247 11.309318 0
-0.445678 3.297303 1
1.042222 6.105155 1
-0.618787 10.320986 0
1.152083 0.548467 1
0.828534 2.676045 1
-1.237728 10.549033 0
-0.683565-2.166125 1
0.229456 5.921938 1
-0.959885 11.555336 0
0.492911 10.993324 0
0.184992 8.721488 0
-0.355715 10.325976 0
-0.397822 8.058397 0
0.824839 13.730343 0
1.507278 5.027866 1
0.099671 6.835839 1
-0.344008 10.717485 0
1.785928 7.718645 1
-0.918801 11.560217 0
-0.364009 4.747300 1
-0.841722 4.119083 1
0.490426 1.960539 1
-0.007194 9.075792 0
0.356107 12.447863 0
0.342578 12.281162 0
-0.810823-1.466018 1
2.530777 6.476801 1
1.296683 11.607559 0
0.475487 12.040035 0
-0.783277 11.009725 0
0.074798 11.023650 0
-1.337472 0.468339 1
-0.102781 13.763651 0
-0.147324 2.874846 1
0.518389 9.887035 0
1.015399 7.571882 0
-1.658086-0.027255 1
1.319944 2.171228 1
2.056216 5.019981 1
-0.851633 4.375691 1
-1.510047 6.061992 0
-1.076637-3.181888 1
1.821096 10.283990 0
3.010150 8.401766 1
-1.099458 1.688274 1
-0.834872-1.733869 1
-0.846637 3.849075 1
1.400102 12.628781 0
1.752842 5.468166 1
0.078557 0.059736 1
0.089392-0.715300 1
1.825662 12.693808 0
0.197445 9.744638 0
0.126117 0.922311 1
-0.679797 1.220530 1
0.677983 2.556666 1
0.761349 10.693862 0
-2.168791 0.143632 1
1.388610 9.341997 0
0.317029 14.739025 0

‘‘‘

Machine learning Combat Logistic regression Python code

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.