329 ms. Create a Source Vertex sink by yourself, connect the Source Vertex to all the food, and split a cow into two points. Ox I-1, Ox I-2, linking food with ox I-1, then all ox I, connecting ox I-1 and ox I-2, linking ox I-2 to drinks. Finally, all the drinks are connected to the sink.
The figure is like this: source point s --> food F --> OX 1 --> OX 2 --> drink D --> sink point t
Split the ox into two dots and place them in the middle to connect the food and drinks at the same time. Then the two nodes of the ox are connected to each other, with a capacity of 1. The Food and Beverage data is read from OX 1 and OX 2.
# Include <iostream>
# Include <cstdio> // EK () algorithm. Time complexity (VE ^ 2)
# Include <queue>
# Include <cstring>
Using namespace std;
Const int maxn = 500;
Const int INF = 0x3fffffff;
Int N, F, D;
Int Fi [maxn];
Int Di [maxn];
Int g [maxn] [maxn];
Int flow [maxn], pre [maxn];
Bool vis [maxn];
Int n;
Int bfs (int s, int e ){
Memset (pre,-1, sizeof (pre ));
Memset (vis, false, sizeof (vis ));
Queue <int> q;
Vis [s] = true;
For (int I = 1; I <= n; I ++)
Flow [I] = INF;
Q. push (s );
While (! Q. empty ()){
Int now = q. front ();
Q. pop ();
If (now = n) break;
For (int I = 1; I <= n; I ++) {// search for the shortest traffic
If (! Vis [I] & g [now] [I]> 0 ){
Vis [I] = true;
Flow [I] = min (flow [now], g [now] [I]);
Pre [I] = now;
Q. push (I );
}
}
}
If (! Vis [e] | e = 1) // The complete augmenting or Source Vertex coincidence cannot be found.
Return-1;
Else
Return flow [e];
}
Int EK (int s, int e ){
Int temp, d, res, maxflow;
Maxflow = 0;
While (d = bfs (s, e ))! =-1 ){
Maxflow + = d;
Temp = n;
While (temp! = 1 ){
Res = pre [temp];
G [res] [temp]-= d; // forward edge
G [temp] [res] + = d; // reverse edge
Temp = res;
}
}
Return maxflow;
}
Int main (){
Memset (g, 0, sizeof (g ));
Memset (flow, 0, sizeof (flow ));
Cin> N> F> D;
N = 1 + F + N + D + 1;
For (int I = 1; I <= F; I ++)
{
G [1] [I + 1] = 1;
}
For (int I = 1; I <= D; I ++)
{
G [1 + F + N + I] [n] = 1;
}
For (int I = 1; I <= N; I ++)
{
G [1 + F + I] [1 + F + N + I] = 1;
}
Int nf, nd;
For (int I = 1; I <= N; I ++)
{
Cin> nf> nd;
Int x;
While (nf --)
{
Cin> x;
G [1 + x] [1 + F + I] = 1;
}
While (nd --)
{
Cin> x;
G [1 + F + N + I] [1 + F + N + x] = 1;
}
}
Cout <EK (1, n) <endl;
Return 0;
}