Python image normalization job code generation programming write Graph Python job

Source: Internet
Author: User
Tags svm

Python image normalization job code generation programming write Graph Python job
From PIL import Image
Import OS
Import Sys
Import NumPy as NP
Import time
From Sklearn import SVM


# gets all. png files under the specified path
def get_file_list (path):
return [Os.path.join (path, F) for F in Os.listdir (path) if F.endswith (". png")]


# parse the name of the. png Map file
def get_img_name_str (Imgpath):
Return Imgpath.split (OS.PATH.SEP) [-1]


# convert 20px * 20px image data to 1*400 numpy vector
# parameter: imgfile--image name such as: 0_1.png
# return: 1*400 numpy vector
def img2vector (imgfile):
#print ("In Img2vector func--para:{}". Format (Imgfile))
img = Image.open (imgfile). Convert (' L ')
Img_arr = Np.array (img, ' i ') # 20px * 20px grayscale image
Img_normalization = Np.round (img_arr/255) # Normalization of grayscale values
IMG_ARR2 = Np.reshape (Img_normalization, (1,-1)) # 1 * 400 matrix
Return IMG_ARR2

# Read all data from a category and convert it into a matrix
Parameters
# BasePath: The basic path where the image data resides
# mnist-image/train/
# mnist-image/test/
# CLA: Category name
# 0,1,2,..., 9
# return: All data for a category----[Sample quantity * (image width × image height)] Matrix
def read_and_convert (imgfilelist):
DataLabel = [] # Store class label
Datanum = Len (imgfilelist)
Datamat = Np.zeros ((datanum, +)) # Datanum * 400 matrix
For I in Range (Datanum):
IMGNAMESTR = Imgfilelist[i]
Imgname = Get_img_name_str (imgnamestr) # Gets the number _ instance number. png
#print ("Imgname: {}". Format (imgname))
Classtag = Imgname.split (".") [0].split ("_") [0] # Get Class label (number)
#print ("Classtag: {}". Format (Classtag))
Datalabel.append (Classtag)
Datamat[i,:] = Img2vector (IMGNAMESTR)
Return Datamat, DataLabel


# Read Training data
Def read_all_data ():
CName = [' 1 ', ' 2 ', ' 3 ', ' 4 ', ' 5 ', ' 6 ', ' 7 ', ' 8 ', ' 9 ']
Train_data_path = "Mnist-image\\train\\0"
Flist = Get_file_list (Train_data_path)
Datamat, DataLabel = Read_and_convert (flist)
For C in CName:
Train_data_path_ = "mnist-image\\train\\" + C
Flist_ = Get_file_list (train_data_path_)
Datamat_, Datalabel_ = Read_and_convert (flist_)
Datamat = Np.concatenate ((Datamat, Datamat_), axis=0)
DataLabel = Np.concatenate ((DataLabel, Datalabel_), axis=0)
#print (Datamat.shape)
#print (Len (DataLabel))
Return Datamat, DataLabel


# Create Model
def CREATE_SVM (Datamat, DataLabel, decision= ' OVR '):
CLF = SVM. SVC (decision_function_shape=decision)
Clf.fit (Datamat, DataLabel)
Return CLF


#clf = SVM. SVC (decision_function_shape= ' OVR ')
st = Time.clock ()
CLF = CREATE_SVM (Datamat, DataLabel, decision= ' OVR ')
ET = Time.clock ()
Print ("Training spent {:. 4f}s."). Format ((et-st)))


# 10 numbers for the classification test
def main ():
Tbasepath = "mnist-image\\test\\"
Tcname = [' 0 ', ' 1 ', ' 2 ', ' 3 ', ' 4 ', ' 5 ', ' 6 ', ' 7 ', ' 8 ', ' 9 ']
TST = Time.clock ()
Allerrcount = 0
Allerrorrate = 0.0
Allscore = 0.0
For TCN in Tcname:
Testpath = "mnist-image\\test\\" + TCN
#print ("class" + TCN + "path is: {}."). Format (Testpath))
Tflist = Get_file_list (Testpath)
#tflist
Tdatamat, Tdatalabel = Read_and_convert (tflist)
Print ("Test Datamat shape: {0}, test DataLabel len: {1}". Format (Tdatamat.shape, Len (Tdatalabel)))

#print ("Test DataLabel: {}". Format (len (Tdatalabel)))
Pre_st = Time.clock ()
Preresult = Clf.predict (Tdatamat)
Pre_et = Time.clock ()
Print ("recognition" + TCN + "spent {:. 4f}s."). Format ((Pre_et-pre_st)))
#print ("predict result: {}". Format (len (Preresult)))
ErrCount = Len ([x for x in Preresult if X!=TCN])
Print ("Errorcount: {}.". Format (ErrCount))
Allerrcount + = ErrCount
Score_st = Time.clock ()
Score = Clf.score (Tdatamat, Tdatalabel)
Score_et = Time.clock ()
Print ("Computing score spent {:. 6f}s.". Format (Score_et-score_st))
Allscore + = Score
Print ("Score: {:. 6f}.". Format (score))
Print ("error rate is {:. 6f}.".) Format ((1-score)))
Print ("---------------------------------------------------------")


Tet = Time.clock ()
Print ("Testing all class Total spent {:. 6f}s."). Format (TET-TST))
Print ("All error Count is: {}.".) Format (Allerrcount))
Avgaccuracy = allscore/10.0
Print ("Average accuracy is: {:. 6f}.". Format (avgaccuracy))
Print ("Average error rate is: {:. 6f}.". Format (1-avgscore))
Http://www.6daixie.com/contents/3/1375.html

The core staff of the team mainly include Silicon Valley engineers, bat front-line engineers, domestic TOP5 master, PhD students, proficient in German English! Our main business scope is to do programming big homework, curriculum design and so on.

Our Direction field: Window Programming numerical algorithm AI Artificial Intelligence financial statistical Metrology analysis Big Data network programming Web programming Communication Programming game Programming Multimedia Linux plug-in programming API image processing embedded/Microcontroller database programming console process and thread Network security assembly language Hardware programming software Design Engineering Standard Rules. The generation of programming languages or tools including, but not limited to, the following ranges:

C/c++/c# Write

Java Write generation

It generation

Python writes

Tutoring Programming Jobs

The MATLAB Generation writes

Haskell writes

Processing Write

Linux Environment Setup

Rust Generation Write

Data Structure assginment Data structure generation

MIPS Generation Writing

Machine Learning Job Writing

Oracle/sql/postgresql/pig database Generation/Generation/Coaching

Web development, Web development, Web site jobs

Asp. NET Web site development

Finance insurace Statistics Statistics, regression, iteration

Prolog write

Computer Computational Method Generation

Because of professional, so trustworthy. If necessary, please add qq:99515681 or e-mail:[email protected]

: Codinghelp

Python image normalization job code generation programming write Graph Python job

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.