Python's MongoDB module PyMongo operating method collection, mongodbpymongo

Source: Internet
Author: User
Tags mongodb server

Python's MongoDB module PyMongo operating method collection, mongodbpymongo

Import the module before you start:

>>> import pymongo

Next, you must install and start the local mongodb server.

The Connection established on the Consumer Client:

Client = your client ('localhost', 27017) # or client = your client ('mongodb: // localhost: 27017 /')

Obtain the database:

>>> Db = client. test_database # Or >>> db = client ['test-database']

Get a data set:

Collection = db. test_collection # Or collection = db ['test-collection']

Data in MongoDB uses Json-style documents:

>>> import datetime>>> post = {"author": "Mike",...     "text": "My first blog post!",...     "tags": ["mongodb", "python", "pymongo"],...     "date": datetime.datetime.utcnow()}

Insert a document:

>>> posts = db.posts>>> post_id = posts.insert_one(post).inserted_id>>> post_idObjectId('...')

Find a piece of data:

>>> posts.find_one(){u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}>>> posts.find_one({"author": "Mike"}){u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}>>> posts.find_one({"author": "Eliot"})>>>

Search through ObjectId:

>>> post_idObjectId(...)>>> posts.find_one({"_id": post_id}){u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}

Do not convert the ObjectId type to String:

>>> post_id_as_str = str(post_id)>>> posts.find_one({"_id": post_id_as_str}) # No result>>>

What if you have a post_id string?

from bson.objectid import ObjectId# The web framework gets post_id from the URL and passes it as a stringdef get(post_id):  # Convert from string to ObjectId:  document = client.db.collection.find_one({'_id': ObjectId(post_id)})

Insert multiple entries:

>>> new_posts = [{"author": "Mike",...        "text": "Another post!",...        "tags": ["bulk", "insert"],...        "date": datetime.datetime(2009, 11, 12, 11, 14)},...       {"author": "Eliot",...        "title": "MongoDB is fun",...        "text": "and pretty easy too!",...        "date": datetime.datetime(2009, 11, 10, 10, 45)}]>>> result = posts.insert_many(new_posts)>>> result.inserted_ids[ObjectId('...'), ObjectId('...')]

Search for multiple data entries:

>>> for post in posts.find():...  post...{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}{u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}{u'date': datetime.datetime(2009, 11, 10, 10, 45), u'text': u'and pretty easy too!', u'_id': ObjectId('...'), u'author': u'Eliot', u'title': u'MongoDB is fun'}

Of course, you can also restrict the search conditions:

>>> for post in posts.find({"author": "Mike"}):...  post...{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}{u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}

Obtain the number of data entries in the Set:

>>> posts.count()

Or the number of data entries that meet certain search conditions:

>>> posts.find({"author": "Mike"}).count()

Range search, for example, time range:

>>> d = datetime.datetime(2009, 11, 12, 12)>>> for post in posts.find({"date": {"$lt": d}}).sort("author"):...  print post...{u'date': datetime.datetime(2009, 11, 10, 10, 45), u'text': u'and pretty easy too!', u'_id': ObjectId('...'), u'author': u'Eliot', u'title': u'MongoDB is fun'}{u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}

$ Lt means less.

How to create an index? For example, the following query:

>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["cursor"]u'BasicCursor'>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["nscanned"]

Index creation:

>>> from pymongo import ASCENDING, DESCENDING>>> posts.create_index([("date", DESCENDING), ("author", ASCENDING)])u'date_-1_author_1'>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["cursor"]u'BtreeCursor date_-1_author_1'>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["nscanned"]

Connection Aggregation

>>> Account = db. Account # Or >>> account = db ["Account"]

 

View all cluster names

>>> db.collection_names()

 

View A aggregated record

>>> db.Account.find_one() >>> db.Account.find_one({"UserName":"keyword"})

 

View aggregated Fields

>>> db.Account.find_one({},{"UserName":1,"Email":1}){u'UserName': u'libing', u'_id': ObjectId('4ded95c3b7780a774a099b7c'), u'Email': u'libing@35.cn'} >>> db.Account.find_one({},{"UserName":1,"Email":1,"_id":0}){u'UserName': u'libing', u'Email': u'libing@35.cn'}

 

View multiple aggregated records

>>> for item in db.Account.find():    item >>> for item in db.Account.find({"UserName":"libing"}):    item["UserName"]

 

View aggregated record statistics

>>> db.Account.find().count() >>> db.Account.find({"UserName":"keyword"}).count()

 

Sort aggregate query results

>>> Db. account. find (). sort ("UserName") # The default value is ascending> db. account. find (). sort ("UserName", pymongo. ASCENDING) # ASCENDING> db. account. find (). sort ("UserName", pymongo. DESCENDING) # DESCENDING order

 

Multi-column sorting of clustered query results

>>> db.Account.find().sort([("UserName",pymongo.ASCENDING),("Email",pymongo.DESCENDING)])

 

Add record

>>> db.Account.insert({"AccountID":21,"UserName":"libing"})

 

Modify record

>>> db.Account.update({"UserName":"libing"},{"$set":{"Email":"libing@126.com","Password":"123"}})

 

Delete record

>>> Db. Account. remove () -- delete all >>> db. Test. remove ({"UserName": "keyword "})

Articles you may be interested in:
  • Pymongo implements Multi-result multi-column sorting
  • How to add an index to a mongodb database using pymongo
  • Pymongo is a simple method to create an index for mongodb.
  • PyMongo Installation notes
  • Python go download and installation tutorial in Windows
  • How to Use Python to operate MongoDB database PyMongo
  • Pymongo implements the method to control the addition of numeric fields in mongodb

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.