"Data analysis using Python" notes---6th Chapter data loading, storage, and file formats

Source: Internet
Author: User
written in front of the words:

All of the data in the instance is downloaded from the GitHub and packaged for download.
The address is: Http://github.com/pydata/pydata-book there are certain to be explained:

I'm using Python2.7, the code in the book has some bugs, and I use my 2.7 version to tune in.

# Coding:utf-8 from pandas import Series, dataframe import pandas as PD import NumPy as NP df = pd.read_csv (' D:\Source C

Ode\pydata-book-master\ch06\ex1.csv ') DF pd.read_table (' D:\Source code\pydata-book-master\ch06\ex1.csv ', sep= ', ') Pd.read_csv (' D:\Source code\pydata-book-master\ch06\ex2.csv ', Header=none) pd.read_csv (' D:\Source code\ Pydata-book-master\ch06\ex2.csv ', names=[' a ', ' B ', ' C ', ' d ', ' message ']) names=[' A ', ' B ', ' C ', ' d ', ' message '] Pd.read_ CSV (' D:\Source code\pydata-book-master\ch06\ex2.csv ', names=names, index_col = ' message ') parsed = pd.read_csv (' D:\ Source code\pydata-book-master\ch06\csv_mindex.csv ', index_col = [' Key1 ', ' Key2 ']) List (open (' D:\Source code\ Pydata-book-master\ch06\ex3.txt ') result = pd.read_table (' D:\Source code\pydata-book-master\ch06\ex3.txt ', sep= ' \s + ') result pd.read_csv (' D:\Source code\pydata-book-master\ch06\ex4.csv ', skiprows=[0,2,3]) result = Pd.read_csv (' D:\ Source code\pydata-book-master\ch06\ex5.csv ') result pd.isnull [result] result = Pd.read_csv(' D:\Source code\pydata-book-master\ch06\ex5.csv ', na_values=[' NULL ']) Result sentinels = {' message ': [' foo ', ' na '], ' Something ': [' two ']} pd.read_csv (' D:\Source code\pydata-book-master\ch06\ex5.csv ', na_values = sentinels) result = Pd.read_csv (' D:\Source code\pydata-book-master\ch06\ex6.csv ') result Pd.read_csv (' D:\Source code\ Pydata-book-master\ch06\ex6.csv ', nrows=5) Chunker = Pd.read_csv (' D:\Source code\pydata-book-master\ch06\ex6.csv ', chunksize=1000) Chunker tot = Series ([]) for piece in Chunker:tot = Tot.add (piece[' key '].value_counts (), fill_value=0 ) tot = Tot.order (ascending=false) tot[:10] data = pd.read_csv (' D:\Source code\pydata-book-master\ch06\ex5.csv ') Data da Ta.to_csv (' D:\out.csv ') pd.read_csv (' D:\out.csv ') import sys data.to_csv (sys.stdout, sep= ' | ') Data.to_csv (sys.stdout , na_rep= ' NULL ') data.to_csv (Sys.stdout, Index=false, Header=false) data.to_csv (Sys.stdout, Index=false, cols=[' a ', ' B ', ' C ']) dates = Pd.date_range (' 1/1/2000 ', periods=7) ts = Series (Np.arange (7), Index=dates) ts.to_csv (' D:\out.csv ') series.from_csv (' D:\out.csv ', parse_dates=true) import csv f = open (' D:\Source code\ Pydata-book-master\ch06\ex7.csv ') reader = Csv.reader (f) for line in Reader:print line lines = List (Csv.reader open (' D:\Source code\pydata-book-master\ch06\ex7.csv ')) Header,values = line[0],lines[1:] data_dict = {h:v for h, v in Zip (head Er,zip (*values))} data_dict import json obj = "" "{Names": "Www0", "Places": ["AA", "BB", "CC", "DD"], "pet": null, "siblings
': [{' Name ': ' Wang ', ' Age ': ' Zuko '},{' name ': ' Zhang ', ' age ':, ' pet ': ' Cisco '}]} ' ' result = json.loads (obj) Result Asjson = Json.dumps (result) Asjson siblings = Dataframe (result[' siblings '],columns=[' name ', ' age ']) siblings from Lxml.html Import parse from urllib2 import urlopen parsed = Parse (Urlopen (' http://finance.yahoo.com/q/op?s=AAPL+ Options ')) doc = Parsed.getroot () from lxml import objectify path = ' D:\Source code\pydata-book-master\ch06\mta_perf\perf
Ormance_mnr.xml ' parsed = objectify.parse (open (path))root = Parsed.getroot () data = [] for ELT in root. Indicator:el_data = {} for child in Elt.getchildren (): El_data[child.tag] = Child.pyval Data.append (E L_data) perf = dataframe (data) perf frame = pd.read_csv (' D:\Source code\pydata-book-master\ch06\ex1.csv ') frame frame.sa ve (' D:\Source code\pydata-book-master\ch06\\aa ') frame.load (' D:\Source code\pydata-book-master\ch06\\aa ') import
Requests url = ' http://gc.ditu.aliyun.com/regeocoding?l=39.938133,116.395739&type=001 ' resp = requests.get (URL) RESP data = json.loads (Resp.text)

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.