SK-Learn family, sk-learn family
SK-Learn API family
Recently, SK-Learn has been widely used and will be used frequently in the future. I have sorted out all Sk-Learn content, sorted out my ideas, and made it available for future reference.
(You can right-click an image to open it in a separate window or save it to a local device)
Basic public base sklearn. cluster sklearn. datasets Loaders Samples generator sklearn. exceptions sklearn. pipeline sklearn. utils process sklearn. cluster classes Functions sklearn. cluster. bicluster sklearn. model_selection Splitter Classes Splitter Functions Hyper-parameter optimizers Model validation sklearn. dummy sklearn. ensemble (Ensemble Methods) sklearn. feature_extraction sklearn. feature_selection sklearn. gaussian_process sklearn. metrics Model Selection Interface Classification metrics Regression metrics Multilabel ranking metrics Clustering metrics Biclustering metrics Pairwise metrics sklearn. multioutput (Multioutput regression and classification) sklearn. calibration (Probability Calibration) sklearn. cross_decomposition (Cross decomposition) sklearn. preprocessing (Preprocessing and Normalization) mathematical algorithm sklearn. covariance sklearn. decomposition sklearn. isotonic sklearn. kernel_approximation sklearn. kernel_ridge sklearn. discriminant_analysis sklearn. linear_model (Generalized Linear Models) sklearn. manifold sklearn. mixture (Gaussian Mixture Models) sklearn. multiclass sklearn. naive_bayes sklearn. neighbors sklearn. semi_supervised sklearn. svm sklearn. treeNN algorithm sklearn. neural_network