This article mainly introduces the common algorithms used to calculate the maximum common approx of two integers in php. The example summarizes the three common methods for finding the maximum common approx. It has some reference value. For more information, see

This article mainly introduces the common algorithms used to calculate the maximum common approx of two integers in php. The example summarizes the three common methods for finding the maximum common approx. It has some reference value. For more information, see

This example describes a common algorithm used by php to calculate the maximum common number of two integers. Share it with you for your reference. The details are as follows:

The Code is as follows:

<? Php

// Time, return seconds

Function microtime_float ()

{

List ($ usec, $ sec) = explode ("", microtime ());

Return (float) $ usec + (float) $ sec );

}

//////////////////////////////////////// //

// Euclidean Algorithm

Function ojld ($ m, $ n ){

If ($ m = 0 & $ n = 0 ){

Return false;

}

If ($ n = 0 ){

Return $ m;

}

While ($ n! = 0 ){

$ R = $ m % $ n;

$ M = $ n;

$ N = $ r;

}

Return $ m;

}

//////////////////////////////////////// //

// Defined based on the maximum public approx.

Function baseDefine ($ m, $ n ){

If ($ m = 0 & $ n = 0 ){

Return false;

}

$ Min = min ($ m, $ n );

While ($ min> = 1 ){

If ($ m % $ min = 0 ){

If ($ n % $ min = 0 ){

Return $ min;

}

}

$ Min-= 1;

}

Return $ min;

}

//////////////////////////////////////// ////

// Calculation Method in Middle School Mathematics

Function baseSchool ($ m, $ n ){

$ Mp = getList ($ m); // all prime numbers smaller than $ m

$ Np = getList ($ n); // all prime numbers smaller than $ n

$ Mz = array (); // Save the prime factor of $ m

$ Nz = array (); // Save the prime factor of $ n

$ Mt = $ m;

$ Nt = $ n;

// All prime factors of m

// Traverse all prime numbers of m. When m can be divisible, continue the next division, knowing that it cannot be divisible and then the next one can be divisible by m.

// The prime number until the product of all displayed prime numbers is equal to m.

Foreach ($ mp as $ v ){

While ($ mt % $ v = 0 ){

$ Mz [] = $ v;

$ Mt = $ mt/$ v;

}

$ C = 1;

Foreach ($ mz as $ v ){

$ C * = $ v;

If ($ c ==$ m ){

Break 2;

}

}

}

// N all prime factors

Foreach ($ np as $ v ){

While ($ nt % $ v = 0 ){

$ Nz [] = $ v;

$ Nt = $ nt/$ v;

}

$ C = 1;

Foreach ($ nz as $ v ){

$ C * = $ v;

If ($ c ==$ n ){

Break 2;

}

}

}

// Public factor

$ Jj = array_intersect ($ mz, $ nz); // obtain the intersection

$ Gys = array ();

// Remove the least frequent factor among the two.

$ C = 1; // record the number of occurrences

$ P = 0; // record the previous number

Sort ($ jj );

Foreach ($ jj as $ key => $ v ){

If ($ v = $ p ){

$ C ++;

}

Elseif ($ p! = 0 ){

$ C = 1;

}

$ P = $ v;

$ Mk = array_keys ($ mz, $ v );

$ Nk = array_keys ($ nz, $ v );

$ K = (count ($ mk)> count ($ nk ))? Count ($ nk): count ($ mk );

If ($ c> $ k ){

Unset ($ jj [$ key]);

}

}

$ Count = 1;

Foreach ($ jj as $ value ){

$ Count * = $ value;

}

Return $ count;

}

// Calculate the continuous Prime Number Sequence of given integers greater than or equal to 2

// The heratosini syntax

Function getList ($ num ){

$ A = array ();

$ A = array ();

For ($ I = 2; $ I <= $ num; $ I ++ ){

$ A [$ I] = $ I;

}

For ($ I = 2; $ I <= floor (sqrt ($ num); $ I ++ ){

If ($ a [$ I]! = 0 ){

$ J = $ I * $ I;

While ($ j <= $ num ){

$ A [$ j] = 0;

$ J = $ j + $ I;

}

}

}

$ P = 0;

For ($ I = 2; $ I <= $ num; $ I ++ ){

If ($ a [$ I]! = 0 ){

$ L [$ p] = $ a [$ I];

$ P ++;

}

}

Return $ L;

}

/////////////////////////////////////

// Test

$ Time_start = microtime_float ();

// Echo ojld (60, 24); // 0.0000450611 seconds

// Echo baseDefine (60, 24); // 0.0000557899 seconds

Echo baseSchool (60, 24); // 0.0003471375 seconds

$ Time_end = microtime_float ();

$ Time = $ time_end-$ time_start;

Echo'

'. Sprintf (' % 1.10f', $ time). 'seconds ';

I hope this article will help you with php programming.