The C language implementation of data structure collection (mathematics) abstract type

Source: Internet
Author: User

A linked list is an ideal way to implement a collection . Renames the list to set as a typedef. This preserves the concise nature of the list and enables the collection to have some polymorphic properties.

The biggest benefit of using this approach is that you can use List_next to traverse a collection and use List_rem_next to remove a member without identifying it based on the data stored by the member.

Let's start by looking at the contents of the collection abstract data type header file:

Example 1: Collection (abstract data type) header file
#ifndef Set_h#defineSet_h#include<stdlib.h>#include"list.h"/  * Defines the collection as a list structure */typedef list set;/* Initialization of the collection * /voidSet_init (Set *Set,int(match*) (Const void*key1,Const void*key2),void(*destroy) (void*data)); * Set destruction, defined as linked list destruction function */#defineSet_destroy list_destroy/* inserting elements into the collection */intSet_insert (Set *Set,Const void**/* Remove elements from the collection * /intSet_remove (Set *Set,void**data);/* Find the set of aggregates * /intSet_union (Set *setu,ConstSet *set1,ConstSet *Set2);/* Find the intersection of sets * /intSet_intersection (Set *seti,ConstSet *set1,ConstSet *Set2);/* Find the difference set of the set * /intSet_difference (Set *setd,ConstSet *set1,ConstSet *Set2);/* Determines whether a member belongs to a collection * /intSet_is_member (ConstSet *Set,Const void*data); / * Subset of Judgment *  /intSet_is_subset (ConstSet *set1,ConstSet *Set2);/* Determines whether the collection is equal * /intSet_is_equal (ConstSet *set1,ConstSet *Set2);/* The number of elements in the collection * /#defineSet_size (set) (set)->size)#endif

Here are the specific implementations of the various operations:

Example 2: Implementation of a collection abstract data type
#include <stdlib.h>#include<string.h>#include"list.h"#include"set.h"/*Set_init Initialization of a collection*/voidSet_init (Set *Set,int(*match) (Const void*key1,Const void*key2),void(*destroy) (void*data)) {    /*Call List_init*/List_init (Set, destroy); /*initialize the match member separately*/    Set->match =match; return;}/*Set_insert inserting a member into the collection*/intSet_insert (Set *Set,Const void*Data) {/* Cannot insert an existing member into the collection */
if (Set_is_member (Set,data))
return-1;
/* Call List_ins_next Insert element to end */
Return List_ins_next (Set,list_tail (set), data);
}

/*set_remove removing elements */
int Set_remove (set *set,void **data)
{
LISTELMT *member, *prev;
/* Find the member you want to remove */
Prev=null;
/* Traverse linked list */
For (Member=list_head (set); member! = NULL; member = List_next (member))
{
if (Set->match (*data, (List_data (member)))
Break
Prev=member; /*prev just points to the previous member of the matching successful member */
}

/* Return if no member is found */
if (member==null)
return-1;
/* Remove Members */
Return List_rem_next (Set,prev,data);
}

/*set_union solving a set of two sets */
int Set_union (set *setu,const set *set1,const set *set2)
{
LISTELMT *member;
void *data;

/* Initialize a set of aggregates */
Set_init (Setu,set1->match,null);

/* Insert the contents of collection 1 into the set */
For (Member=list_head (SET1); Member!=null;member=list_next (member))
{
Data=list_data (member);
if (List_ins_next (Setu,list_tail (Setu), data)!=0)
{
Set_destroy (Setu);
return-1;
}
}

/* Insert member of Collection 2 */
For (Member=list_head (Set2); Member!=null;member=list_next (member))
{
if (Set_is_member (Set1,list_data (member)))
{
Continue
}
Else
{
Data=list_data (member);
if (List_ins_next (Setu,list_tail (Setu), data))!=0)
{
Set_destroy (Setu);
return-1;
}
}
}
return 0;
}

/*set_intersection solving the intersection of two sets */
int Set_intersection (set *seti,const set *set1,const set *set2)
{
LISTELMT *member;
void *data;

/* Initialize intersection set */
Set_init (Seti,set1->match,null);

/* elements that occur at the same time in two sets are inserted in the set of intersections */
For (Member=list_head (SET1); Member!=null;list_next (member))
{
if (Set_is_member (Set2,list_data (member))
{
Data=list_data (member);
if (List_ins_next (Seti,list_tail (SETI), data))!=0)
{
Set_destroy (SETI);
return-1;
{
}
}
return 0;
}

/*set_difference solving the difference set of two sets */
int Set_intersection (set *setd,const set *set1,const set *set2)
{
LISTELMT *member;
void *data;

/* Initialize set of differences */
Set_init (Setd,set1->match,null);

/* elements that are not present in two sets will be inserted in the set of differences */
For (Member=list_head (SET1); Member!=null;list_next (member))
{
if (! Set_is_member (Set2,list_data (member))
{
Data=list_data (member);
if (List_ins_next (Setd,list_tail (setd), data))!=0)
{
Set_destroy (SETD);
return-1;
{
}
}
return 0;
}

/*set_is_member determines whether the member specified by data is in the collection specified by set */
int Set_is_member (const set *set,void *data)
{
LISTELMT *member;

For (Member=list_head (set); Member!=null;list_next (member))
{
if (Set->match (Data,list_data (member))
return 1;
}
return 0;
}

/*set_is_subset determines whether the set SET1 is a subset of the collection Set2 */
int Set_is_subset (const set *SET1,CONST set *set2)
{
LISTELMT *member;

/* First exclude the number of sets 1 members greater than the number of members of the set 2 */
if (Set_size (Set1) >set_size (Set2))
return 0;

/* If the SET1 members are not in the Set2, then the judgment is not established, except for this establishment * *
For (Member=list_head (SET1); Member!=null;list_next (member))
{
if (!set_is_member (Set2,list_data (member)))
{
return 0;
}
}
return 1;
}

/*set_is_equal to determine whether two sets are equal/*
int set_is_equal (const set *SET1,CONST set *set2)
{
/* First exclude two sets of members with unequal number of cases */
if (Set_size (set1)! = Set_size (Set2))
return 0;

/* When the number of two collection members is equal, and one collection is a subset of the other, the two collections are equal */
Return Set_is_subset (Set1,set2);
}

The C language implementation of data structure collection (mathematics) abstract type

Related Article

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.