Use Python to draw a chart summary, and use python to draw a chart.
Before using Python to draw a chart, we need to install two library files: numpy and matplotlib.
Numpy is an open-source Python numeric computing extension that can be used to store and process large matrices. It is more efficient than Python's own data structure. matplotlib is a Python image framework, the effect of the image drawn using it is similar to that drawn using MATLAB.
Next I will use some simple code to introduce how to plot using Python.
1. Drawing
Histogram
Importmatplotlib. pyplotaspltimportnumpyasnpmu = 100 sigma = 20x = mu + sigma * np. random. randn (20000) # number of samples plt. hist (x, bins = 100, color = 'green', normed = True) # bins displays several vertices and whether normed standardizes the data plt. show ()
Bar Chart
importmatplotlib.pyplotaspltimportnumpyasnpy=[20,10,30,25,15]index=np.arange(5)plt.bar(left=index,height=y,color='green',width=0.5)plt.show()
Line chart
importmatplotlib.pyplotaspltimportnumpyasnpx=np.linspace(-10,10,100)y=x**3plt.plot(x,y,linestyle='--',color='green',marker='<')plt.show()
Scatter chart
Importmatplotlib. pyplotaspltimportnumpyasnpx = np. random. randn (1000) y = x + np. random. randn (1000) * 0.5plt.scatter (x, y, s = 5, marker = '<') # s indicates the area, and marker indicates the drawing plt. show ()
Pie Chart
Importmatplotlib. pyplotaspltimportnumpyasnplabels = 'A', 'B', 'C', 'D' fracs = [15,30, 45,10] plt. axes (aspect = 1) # Make the x-axis ratio the same explode = [0, 0.05,] # highlight a part of the Area plt. pie (x = fracs, labels = labels, autopct = '%. 0f % ', explode = explode) # autopct displays the percentage plt. show ()
Box chart
It is mainly used to display data dispersion. Graphs are divided into the upper edge, the upper quartile, the median, the lower quartile, and the lower edge. Abnormal values outside
importmatplotlib.pyplotaspltimportnumpyasnpnp.random.seed(100)data=np.random.normal(size=(1000,4),loc=0,scale=1)labels=['A','B','C','D']plt.boxplot(data,labels=labels)plt.show()
Ii. Image Adjustment
1. 23 point shapes
"."point","pixel"o"circle"v"triangle_down"^"triangle_up"<"triangle_left">"triangle_right"1"tri_down"2"tri_up"3"tri_left"4"tri_right"8"octagon"s"square"p"pentagon"*"star"h"hexagon1"H"hexagon2"+"plus"x"x"D"diamond"d"thin_diamond
2. Abbreviations of 8 default colors
b:blueg:greenr:redc:cyanm:magentay:yellowk:blackw:white
3. Four linear
-Solid line-dotted line-. dotted line: dotted line
4. Draw a subgraph on a graph
Importmatplotlib. pyplotaspltimportnumpyasnpx = np. arange (1, 1,100) plt. subplot (221) #2 rows, 2 columns, and 2 columns. plot (x, x) plt. subplot (222) plt. plot (x,-x) plt. subplot (223) plt. plot (x, x * x) plt. subplot (224) plt. plot (x, np. log (x) plt. show ()
5. Generate a grid
importmatplotlib.pyplotaspltimportnumpyasnpy=np.arange(1,5)plt.plot(y,y*2)plt.grid(True,color='g',linestyle='--',linewidth='1')plt.show()
6. Generate a legend
importmatplotlib.pyplotaspltimportnumpyasnpx=np.arange(1,11,1)plt.plot(x,x*2)plt.plot(x,x*3)plt.plot(x,x*4)plt.legend(['Normal','Fast','Faster'])plt.show()
The above is all the content of this article. I hope it will be helpful for your learning and support for helping customers.