Python大資料:信用卡逾期分析

來源:互聯網
上載者:User

標籤:plt   col   python   plot   相關性   信用卡   enc   res   infer   

# -*- coding:utf-8 -*-# Data Integrationimport csvimport numpy as npimport pandas as pdimport matplotlib.pyplot as plt  #客戶資訊basicInfo = pd.DataFrame.from_csv(‘datas/basicInfo_train.csv‘, header=0, sep=‘,‘, index_col=0, parse_dates=True, encoding=None, tupleize_cols=False, infer_datetime_format=False)#曆史還款記錄historyInfo = pd.DataFrame.from_csv(‘datas/history_train.csv‘, header=0, sep=‘,‘, index_col=0, parse_dates=True, encoding=None, tupleize_cols=False, infer_datetime_format=False)#曆史逾期情況defaultInfo = pd.DataFrame.from_csv(‘datas/default_train.csv‘, header=0, sep=‘,‘, index_col=0, parse_dates=True, encoding=None, tupleize_cols=False, infer_datetime_format=False)combineInfo = pd.concat([basicInfo,historyInfo,defaultInfo],axis=1)
#查看前10條資料combineInfo[:10]
#性別分析gender = combineInfo.groupby(‘SEX‘)[‘Default‘].mean().reset_index()plt.xticks((0,1),(u"Male",u"Female"))plt.xlabel(u"Gender")plt.ylabel(u"Counts")plt.bar(gender.SEX,gender.Default,0.1,color=‘green‘)plt.show()
#教育程度與default值的相關性分析edu = combineInfo.groupby(‘EDUCATION‘)[‘Default‘].mean()plt.plot(edu)plt.show()
#婚姻狀況分析marriage = combineInfo.groupby(‘MARRIAGE‘)[‘Default‘].mean().reset_index()plt.bar(marriage.MARRIAGE,marriage.Default,0.5,color=‘green‘)plt.show()

 

Python大資料:信用卡逾期分析

相關文章

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.