installation of Keras and Theano is relatively easy, there is no problem, so I will not say. About TensorFlow, online a lot of said with the source code to install, in fact, as long as the version of the correct choice to use the source of the installation, or very easy, so be sure to install with their own cuda and CUDNN version corresponding. For example, I installed Cuda 8.0 and CUDNN V5, according to T
Nowadays, AI is getting more and more attention, and this is largely attributed to the rapid development of deep learning. The successful cross-border between AI and different industries has a profound impact on traditional industries.Recently, I also began to keep in touch with deep learning, before I read a lot of articles, the history of deep learning and related theoretical knowledge also have a general understanding.But as the saying goes: The end of the paper is shallow, it is known that t
Reprint Please specify:Look at Daniel's small freshness : http://www.cnblogs.com/luruiyuan/This article original website : http://www.cnblogs.com/luruiyuan/p/6660142.htmlThe Ubuntu version I used was 16.04, and using Gnome as the desktop (which doesn't matter) has gone through a lot of twists and turns and finally completed the installation of Keras with TensorFlow as the back end.Installation of the TENSORFLOW-GP
. Then this version should be a driver that matches CUDA8 with each other. )
Install cudnn5.1 (HTTPS://DEVELOPER.NVIDIA.COM/CUDNN) unzip the installation package just down, copy the files under these three folders to the Cuda folder below.
After the Anaconda installation is complete, you should be able to see whether the version is 3.5 by tapping Python directly in the Windows Command window.
Create a TensorFlow virtual environment c:> Conda create-n TensorFlow python=3.5, everything in th
Win10 + python3.6 + VSCode + tensorflow-gpu + keras + cuda8 + cuDN6N environment configuration, win10cudn6n
Preface:
Before getting started, I knew almost nothing about python or tensorflow, so I took a lot of detours When configuring this environment, it took a whole week to complete the environment... However, the most annoying thing is that it is difficult to set up the environment. Because my laptop is
Today, the GPU is used to speed up computing, that feeling is soaring, close to graduation season, we are doing experiments, the server is already overwhelmed, our house server A pile of people to use, card to the explosion, training a model of a rough calculation of the iteration 100 times will take 3, 4 days of time, not worth the candle, Just next door there is an idle GPU depth learning server, decided
the profile file ( Note: If you are not using version 8.0, you need to modify the version number ):→~ Export cuda_home=/usr/local/cuda-8.0→~ Export Path=/usr/local/cuda-8.0/bin${path:+:${path}}→~ Export Ld_library_path=/usr/local/cuda-8.0/lib64${ld_library_path:+:${ld_library_path}}After modification:→~ Source/etc/profileVerify that the configuration is successful:→~ nvcc-vThe following message appears to be successful: 4. Installing the CUDNN Acceleration LibraryThis article uses the CUDA8.0,
Keras in the use of the GPU when the feature is that the default is full of video memory. That way, if you have multiple models that need to run with a GPU, the restrictions are huge and a waste to the GPU. So when using Keras, you need to consciously set how much capacity y
. TensorFlow and Theano are the most common digital platforms used in Python to build depth learning algorithms, but they can be quite complex and difficult to use. By contrast, Keras provides a simple and convenient way to build a deep learning model. Its creator is françoischollet, enabling people to build neural networks as quickly and simply as possible. He focuses on scalability, modularity, minimalism, and Python support.
Use keras to determine SQL injection attacks (for example ).
This article uses the deep learning framework keras for SQL Injection feature recognition. However, although keras is used, most of them are common neural networks, it only adds some regularization and dropout layers (layers that appear with deep learning ).
International-airline-passengers.csv is less, roughly as follows"Month","International airline passengers: monthly totals in thousands. Jan 49 ? Dec 60""1949-01",112"1949-02",118"1949-03",132"1949-04",129"1949-05",121"1949-06",135"1949-07",148"1949-08",148"1949-09",136"1949-10",119"1949-11",104"1949-12",118"1950-01",115"1950-02",126"1950-03",141"1950-04",135"1950-05",125"1950-06",149"1950-07",170"1950-08",170"1950-09",158"1950-10",133"1950-11",114"1950-12",140"1951-01",145"1951-02",150"1951-03"
In view of the need to use the GPU CUDA this technology, I want to find an introductory textbook, choose Jason Sanders and other books, CUDA by Example a Introduction to the general Purpose GPU Programmin G ". This book is very good as an introductory material. I think from the perspective of understanding and memory, many of the contents of the book can be omitt
:( 65536,65535)The maximum dimensions for 3D textures :( 2048,2048, 2048)Whether the device supports executing multiple kernels within the same context simultaneously: Yes!Yue @ ubuntu-10 :~ /Cuda/cudabye $ Vim cudabyex331.cuYue @ ubuntu-10 :~ /Cuda/cudabye $ Vim cudabyex331.cuYue @ ubuntu-10 :~ /Cuda/cudabye $./Cuda-Bash:./Cuda: This case or project does not exist.Yue @ ubuntu-10 :~ /Cuda/cudabye $./cudabyex331The Count of Cuda devices: 1
--- General information for device 0 ---Name of the Cud
Book DescriptionCuda is a computing architecture designed to facilitate the development of parallel programs. in conjunction with a comprehensive software platform, the Cuda architecture enables programmers to draw on the immense power of graphics processing units (GPUs) when building high-performance applications. GPUs, of course, have long been available for demaning graphics and game applications. cuda now brings this valuable resource to programmers working on applications in other domains,
("Matrixmul_kernel.cu", argv[0));Compilefiletoptx (kernel_file, 0, NULL, ptx, ptxsize);Cumodule module = loadptx (ptx, argc, argv);Find the location of the Cu file. The Cu file is the C language syntax, is the suffix is different, this is mainly realizes the algorithm. Then callCompile the Cu file to the GPU to understand the execution code, and then pass LOADPTX to execute the load function.is to compile the Cu file into something that the
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.